

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.2

1.6.3

1.6.3.1

1.6.3.2

1.6.4

1.6.4.1

1.6.4.2

1.6.4.3

1.6.4.4

1.6.5

1.6.6

1.7

1.7.1

1.7.2

1.7.2.1

1.7.2.2

1.7.2.3

1.7.2.4

1.7.3

1.7.3.1

1.7.4

Table	of	Contents
Package	Developer	Guide

Release	Notes

Breaking	Changes

Getting	Started

System	Requirements

Prepare	Envrionment

Your	First	Package

Synology	Toolkit

Build	Stage

Pack	Stage

Sign	Package	(only	for	DSM6.X)

References

Synology	Package

INFO

Necessary	Fields

Optional	Fields

package.tgz

scripts

Script	Environment	Variables

Script	Messages

conf

privilege

resource

PKG_DEPS

PKG_CONX

WIZARD_UIFILES

LICENSE

Synology	DSM	Integration

FHS

Desktop	Application

Application	Config

Application	Help

Application	I18N

Application	Authentication

Privilege

Privilege	Config

Resource

2

1.7.4.2

1.7.4.3

1.7.4.4

1.7.4.4.1

1.7.4.4.2

1.7.4.4.3

1.7.4.4.4

1.7.4.4.5

1.7.4.4.6

1.7.4.4.7

1.7.4.4.8

1.7.4.4.9

1.7.4.4.10

1.7.4.1

1.7.5

1.7.6

1.7.7

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.9.2

1.9.3

1.10

1.11

1.11.1

1.11.2

1.11.3

1.12

Resource	Config

Resource	Timing

Resource	Update

Resource	List

/usr/local	linker

Apache	2.2	Config

Data	Share

Index	DB

Maria	DB

PHP	INI

Port	Config

Systemd	User	Unit

Syslog	Config

Web	Service

Port

Monitor

System	API

Package	Examples

Open	Source	Tool:	tmux

Open	Source	Tool:	nmap

Web	Package:	WordPress

Publish	Synology	Packages

Get	Started	with	Publishing

Submitting	the	Package	for	Approval

Responding	to	User	Issues

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

Appendix	B:	Compile	Applications	Manually

Download	DSM	Tool	Chain

Compile

Compile	Open	Source	Projects

Appendix	C:	Publication	Review	&	Verification

3

Synology	DSM	7.0	Developer	Guide
Synology	offers	this	developer	guide	with	instructions	on	how	to	develop	packages	on	Synology	NAS	products.	You	should	have
basic	understanding	of	Linux	programming.	With	this	guide,	you	can	familiarize	yourself	with	the	following	procedures:

Compile	programs	to	run	on	a	Synology	NAS.
Integrate	packages	with	the	Synology	DiskStation	Manager	(DSM).
Integrate	packages	with	the	DSM	help.
Integrate	packages	with	the	DSM	desktop	application.
Integrate	packages	with	the	DSM	firewall.
Integrate	packages	with	the	DSM	resource	monitor.

THIS	DOCUMENT	CONTAINS	PROPRIETARY	TECHNICAL	INFORMATION	WHICH	IS	THE	PROPERTY	OF
SYNOLOGY	INCORPORATED	AND	SHALL	NOT	BE	REPRODUCED,	COPIED,	OR	USED	AS	THE	BASIS	FOR	DESIGN,
MANUFACTURING,	OR	SALE	OF	APPARATUS	WITHOUT	WRITTEN	PERMISSION	OF	SYNOLOGY	INCORPORATED

Copyright
Synology	Inc.	®	2020	Synology	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,
mechanical,	electronic,	photocopying,	recording,	or	otherwise,	without	prior	written	permission	of	Synology	Inc.,	with	the
following	exceptions:	Any	person	is	hereby	authorized	to	store	documentation	on	a	single	computer	for	personal	use	only	and	to
print	copies	of	documentation	for	personal	use	provided	that	the	documentation	contains	Synology’s	copyright	notice.

The	Synology	logo	is	a	trademark	of	Synology	Inc.

No	licenses,	express	or	implied,	are	granted	with	respect	to	any	of	the	technology	described	in	this	document.	Synology	retains	all
intellectual	property	rights	associated	with	the	technology	described	in	this	document.	This	document	is	intended	to	assist
application	developers	to	develop	applications	only	for	Synology-labeled	computers.

Every	effort	has	been	made	to	ensure	that	the	information	in	this	document	is	accurate.	Synology	is	not	responsible	for
typographical	errors.

Synology	Inc.	9F.,	No.1,	Yuandong	Rd.,	New	Taipei	City	22063,	Taiwan

Synology	and	the	Synology	logo	are	trademarks	of	Synology	Inc.,	registered	in	the	United	States	and	other	countries.

Marvell	is	registered	trademarks	of	Marvell	Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Freescale	is	registered	trademarks	of	Freescale.	Intel	and	Atom	is	registered	trademarks	of	Intel.

Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Other	products	and	company	names	mentioned	herein	are	trademarks	of	their	respective	holders.

Even	though	Synology	has	reviewed	this	document,	SYNOLOGY	MAKES	NO	WARRANTY	OR	REPRESENTATION,
EITHER	EXPRESS	OR	IMPLIED,	WITH	RESPECT	TO	THIS	DOCUMENT,	ITS	QUALITY,	ACCURACY,
MERCHANTABILITY,	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	AS	A	RESULT,	THIS	DOCUMENT	IS	PROVIDED
“AS	IS,”	AND	YOU,	THE	READER,	ARE	ASSUMING	THE	ENTIRE	RISK	AS	TO	ITS	QUALITY	AND	ACCURACY.	IN
NO	EVENT	WILL	SYNOLOGY	BE	LIABLE	FOR	DIRECT,	INDIRECT,	SPECIAL,	INCIDENTAL,	OR	CONSEQUENTIAL
DAMAGES	RESULTING	FROM	ANY	DEFECT	OR	INACCURACY	IN	THIS	DOCUMENT,	even	if	advised	of	the	possibility
of	such	damages.

Package	Developer	Guide

4

THE	WARRANTY	AND	REMEDIES	SET	FORTH	ABOVE	ARE	EXCLUSIVE	AND	IN	LIEU	OF	ALL	OTHERS,	ORAL	OR
WRITTEN,	EXPRESS	OR	IMPLIED.	No	Synology	dealer,	agent,	or	employee	is	authorized	to	make	any	modification,
extension,	or	addition	to	this	warranty.

Some	states	do	not	allow	the	exclusion	or	limitation	of	implied	warranties	or	liability	for	incidental	or	consequential	damages,	so
the	above	limitation	or	exclusion	may	not	apply	to	you.	This	warranty	gives	you	specific	legal	rights,	and	you	may	also	have	other
rights	which	vary	from	state	to	state.

Package	Developer	Guide

5

Synology	Package	Framework	7.0

Breaking	Changes

Find	more	details	please	refer	to	breaking	changes	Breaking	Changes	In	7.0.

1.	Package	Framework

Force	lower	privilege	for	package
Force	some	INFO	fields	to	be	neccessary
Remove	package	signing
Remove	 	run-as	system		from	privilege
Change	default	home	path	from	 	target		to	 	home	
Change	 	PACKAGE_ICON.PNG		from	72x72	to	64x64
Change	FHS	directory	owner	according	to	privilege	settings
Change	package	log	location	to	 	/var/log/packages/[package_name].log		and	 	/var/log/synopkg.log	
Consider	 	prestart		script	on	bootup

2.	Package	Center

Remove	keyring
Remove	trust	level

3.	Commands

	synopkg	start		starts	the	package	with	its	dependees
	synopkg	install		checks	if	the	package	can	be	installed

New	Features

1.	SDK	Plugin

Add	 	package_install		module
Add	 	package_uninstall		module
Add	 	package_start		module
Add	 	package_stop		module

2.	Package	Framework

Add	 	var		directory	for	FHS
Add	 	tmp		directory	for	FHS
Add	 	home		directory	for	FHS
Add	 	prereplace		script
Add	 	postreplace		script
Add	 	install_on_cold_storage		to	INFO
Add	 	install_provide_packages		to	INFO
Add	 	exclude_model		to	INFO
Add	 	dsmapppage		to	INFO

Release	Notes

6

Add	 	use_deprecated_replace_mechanism		to	INFO
Add	multiple	directories	support	for	 	dsmuidir		in	INFO
Add	 	capabilities		to	privilege
Add	 	join-pkg-groupnames		to	privilege
Add	 	privilege-migration		to	privilege
Be	able	to	install	packages	concurrently
Be	able	to	specify	start	/	stop	timeout

3.	Resource	Worker

Add	 	strong-dependence		to	data-share	worker	for	package	who	needs	auto	start	after	encrypted	share	mounted
Add	 	systemd-user-unit		worker

4.	Commands

Add	 	synopkg	analyze		for	showing	elapsed	time	during	the	operation

Enhancements

1.	Package	Framework

Restart	package	after	repaired	according	to	its	original	state
Cannot	continue	to	install	package	if	spk	checksum	is	incorrect

2.	Package	Center

Be	able	to	start	a	package	with	its	dependees
Be	able	to	stop	a	package	with	its	dependers
Be	able	to	uninstall	a	package	with	its	dependers
Be	able	to	repair	start-failed	package	via	repair	button
Community	sources	should	have	same	name	/	source

Release	Notes

7

Breaking	Changes	in	7.0
In	DSM7.0	,	there’re	some	breaking	changes	in	package	framework、Package	Center	and	commands.	Also	see	Release	Notes.

Package	Framework	Changes

1.	Force	lower	privilege	for	package

All	packages	should	provide	 	conf/privilege		with	 	package		in	 	run-as		explicitly.	Any	privileged	operation	should	be
accomplished	via	resource	worker.

But	if	you	are	3rdparty	developer,	you	can	still	use	 	root		privilege.

2.	Force	some	INFO	fields	to	be	neccessary

Any	package	should	have	 	package	,	 	version	,	 	os_min_ver	,	 	description	,	 	arch		and	 	maintainer		fields.	Futhermore,	the
value	of	 	os_min_ver		should	be	at	least	 	7.0-40000		or	you	cannot	install	the	package	correctly.

3.	Remove	package	signing	mechanism

Packages	are	no	longer	able	to	do	signing	in	packing	stage.

4.	Remove	 	run-as	system		from	privilege

Packages	will	not	be	able	to	use	run-as	system	in	 	conf/privilege	.	Instead,	all	packages	should	run	as	 	package	.

5.	Change	default	home	path	from	 	target		to	 	home	

The	home	directory	of	package	is	changed	from	 	/var/packages/[package_name]/target		to
	/var/packages/[package_name]/home		and	its	mode	will	be	0700.

6.	Change	 	PACKAGE_ICON.PNG		from	72x72	to	64x64

Package	should	have	PACKAGE_ICON.PNG	in	64x64	above	7.0.

7.	Change	FHS	directory	owner	according	to	privilege	settings

FHS	directories	such	as	 	target		will	have	new	privilege	settings	according	to	 	conf/privilege	.

8.	Change	package	log	location	to	 	/var/log/packages/[package_name].log		and
	/var/log/synopkg.log	

Package	operation	log	is	still	at	 	/var/log/synopkg.log		but	control	script	log	will	be	at
	/var/log/packages/[package_name].log	.	Besides,	when	you	are	developing	a	package,	you	should	always	pay	attention	to	the
content	of	 	/var/log/messages		to	check	if	there	are	any	warning	or	error.

9.	Consider	 	prestart		script	on	bootup

The	 	prestart		script	will	run	on	bootup	to	check	if	a	package	can	be	started.

Breaking	Changes

8

Package	Center	Changes

1.	Remove	keyring	&&	Remove	trust	level

User	are	no	longer	be	able	to	add	/	remove	keyrings	on	package	center	since	we	have	deprecated	the	codesign	mechanism	of	spk.
Similarly,	there	will	be	no	trust	level	settings	for	user	to	choose.	Any	non-synology	package	will	get	alert	on	installation.

Command	Changes

1.	 	synopkg	start		starts	a	package	with	its	dependees

If	A	depends	on	B,	run	 	synopkg	start	A		will	also	start	B	when	B	is	not	started.

2.	 	synopkg	install		checks	if	package	can	be	installed

The	 	synopkg	install		command	will	have	same	constraints	as	UI	installation.

Breaking	Changes

9

Getting	Started
Getting	started	to	learn	how	to	easily	build	packages	just	the	way	you	like!

What	can	packages	do	?

access	DSM	API
access	owned	data	share	folder
integrate	desktop	application
integrate	desktop	wizard
integrate	help	documents
integrate	firewall	rules
integrate	resource	monitor
define	lifecycle	behaviour
define	relationship	between	packages
define	identity	privilege

How	to	develop	packages	?

To	develop	packages,	you	first	need	to	know	the	entire	working	flow:

1.	 Prepare	a	NAS

You	can	choose	one	at	our	official	site	and	buy	it	from	local	synology	partner.	It	is	recommended	to	take	one	from	the	Plus
Series.

2.	 Prepare	environments	for	local	development

Since	our	NAS	is	not	always	in	 	x86		or	 	x86_64		architecture,	we	should	prepare	corresponding	environment	to	our	NAS
(for	cross	compiling	if	you	are	developing	in	C/C++).	We	provide	tons	of	tools	for	creating	different	development
environments	of	our	NAS	in	an	easy	way.

3.	 Decide	what	you	want	to	make

Getting	Started

10

https://www.synology.com/products
https://www.synology.com/wheretobuy/locate_synology_partner

If	you	want	to	develop	an	application	in	 	Node.js	,	you	can	make	your	package	depend	on	our	official	 	Node.js		package.	If
you	want	to	develop	in	 	PHP	,	you	can	still	make	your	package	depend	on	 	PHP		package.	We	have	already	provided
	Node.js	,	 	PHP	,	 	Perl	,	 	Python	,	 	Java		packages	for	langugage	run	time	on	DSM.

You	can	make	great	packages	by	leveraging	our	Package	Framework	to	have	stable,	controllable	and	power	saving
properties.	We	provide	complete	toolkit	for	cross	compiling	and	packing	so	you	can	also	develop	in	an	easy	way.

4.	 Decide	whether	to	publish	packages	onto	official	Synology	Package	Center

To	have	higher	exposure	rate	or	paid	package,	it	is	recommended	to	publish	your	package	onto	our	official	package	center.

Begin	to	develop	packages

In	later	topics,	we	will	take	a	closer	look	at	development.	You	can	find	articles	such	as

System	Requirement
Prepare	Environment
Your	First	Package

Getting	Started

11

System	Requirements

Toolkit	Requirements

64bit	generic	linux	environment	with	root	permission	(e.g.,	Ubuntu	18.04	LTS)
bash	(>=	4.1.5)
python	(>=	2.7.3)

Please	DO	NOT	install	toolkit	on	Synology	NAS	as	your	development	environment.	NAS	is	specialized	for	storage,	and	not	for
generic	developing	purpose.	Instead,	you	can	install	 	Docker		package	on	NAS	then	setup	a	generic	linux	container	to	install	the
toolkit.

Runtime	Requirements
If	your	package	is	for	DSM6	then	you	should	have	a	DSM6	NAS.
If	your	package	is	for	DSM7	then	you	should	have	a	DSM7	NAS.

Package	for	DSM6	is	not	compatible	with	DSM7

System	Requirements

12

Prepare	Environment

Install	Toolkit

Toolkit	Installation:

You	need	to	clone	the	front-end	scripts	from	this	link.	We	will	use	 	/toolkit		as	toolkit	base	in	this	document	from	now	on.

apt-get	install	git

mkdir	-p	/toolkit

git	clone	https://github.com/SynologyOpenSource/pkgscripts-ng

Then	you	need	to	install	a	few	tools	to	make	the	built	tool	work:

apt-get	install	cifs-utils	\

				python	\

				python-pip	\

				python3	\

				python3-pip

At	this	moment,	you	can	find	toolkit	files	as	the	follows:

/toolkit

├──	pkgscripts-ng/

│			├──	include/

│			├──	EnvDeploy				(deployment	tool	for	chroot	environment)

│			└──	PkgCreate.py	(build	tool	for	package)

└──	build_env/							(directory	to	store	chroot	environments)

Deploy	Chroot	Environment	For	Different	NAS	Target
For	faster	development,	we	have	prepared	several	build	environments	of	different	architectures	which	contain	some	pre-built
projects	whose	executable	binaries	or	shared	libraries	are	built	in	DSM,	for	example,	 	zlib	,	 	libxml2		and	so	on.

You	can	use	 	EnvDeploy		to	deploy	corresponding	environment	of	your	NAS.	For	example,	if	there	is	a	NAS	in	 	x64	
architecture,	it	is	possible	to	use	following	commands	to	deploy	a	environment	for	 	x64	:

cd	/toolkit/pkgscripts-ng/

./EnvDeploy	-v	7.0	-p	x64	#	for	DSM7.0

cd	/toolkit/pkgscripts-ng/

./EnvDeploy	-v	6.2	-p	x64		#	for	DSM6.2

As	mentioned	before,	the	deployed	environment	contains	some	pre-built	libraries	and	headers	which	can	be	found	under	cross	gcc
sysroot.	Sysroot	is	the	default	search	path	of	compiler.	If	gcc	cannot	find	header	or	library	from	the	given	path,	it	will	then	search
	sysroot/usr/{lib,include}	.

/toolkit

├──	pkgscripts-ng/

│			├──	include/

Prepare	Envrionment

13

https://github.com/SynologyOpenSource/pkgscripts-ng
https://www.synology.com/knowledgebase/DSM/tutorial/Compatibility_Peripherals/What_kind_of_CPU_does_my_NAS_have

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	build_env/

				├──	ds.x64-7.0/

				└──	ds.x64-6.2/

								└──	usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/

Available	Platforms
You	can	use	one	of	the	following	commands	to	show	available	platforms.	If	 	-v		is	not	given,	available	platforms	for	all	versions
will	be	listed.

./EnvDeploy	-v	7.0	--list

./EnvDeploy	-v	7.0	--info	platform

Update	Environment
Use	 	EnvDeploy		again	to	update	the	environment.	For	example,	you	can	update	x64	for	DSM	7.0	as	follows.

./EnvDeploy	-v	7.0	-p	x64

Remove	Environment

To	remove	a	environment,	you	first	need	to	unmount	the	 	/proc		folder	then	remove	the	environment	folder.	The	following
commands	illustrate	how	to	remove	an	environment	with	version	7.0	and	platform	x64.

umount	/toolkit/build_env/ds.x64-7.0/proc

rm	-rf	/toolkit/build_env/ds.x64-7.0

Prepare	Envrionment

14

Your	First	Package
Make	sure	you	have	prepared	the	development	environment	for	your	NAS.

Download	the	template	package

You	can	download	our	template	package	from	https://github.com/SynologyOpenSource/minimalPkg	and	place	it	at
	/toolkit/source/minimalPkg	.

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──minimalPkg/

								├──	minimalPkg.c

								├──	INFO.sh

								├──	Makefile

								├──	PACKAGE_ICON.PNG

								├──	PACKAGE_ICON_256.PNG

								├──	scripts/

								│			├──	postinst

								│			├──	postuninst

								│			├──	postupgrade

								│			├──	postreplace

								│			├──	preinst

								│			├──	preuninst

								│			├──	preupgrade

								│			├──	prereplace

								│			└──	start-stop-status

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Configure	Build	Configs

The	steps	to	build	package	and	pack	package	are	configured	under	 	${project_path}/SynoBuildConf/	.	You	can	see	three	files:

depends:	configure	dependencies	between	projects
build:	configure	steps	to	build	package
install:	configure	steps	to	pack	package	into	 	.spk		file

This	example	will	echo	some	messages	by	a	program	written	in	C	language,	so	it	is	neccessary	to	compile	program	in	build	stage.
We	apply	 	Makefile		in	this	example	to	help	us	doing	cross	compilation.

We	do	not	concern	what	you	do	in	 	build		configuration	so	that	it	can	even	do	nothing.	The	build	system	will	just	chroot	into
environment	then	call	the	corresponding	 	build	,	 	install		script	according	to	the	commands.

Configure	Properties

The	package	information	and	its	behavior	are	controlled	by	 	INFO.sh		which	will	be	translated	into	 	INFO		file	in	 	install	.

Your	First	Package

15

https://github.com/SynologyOpenSource/minimalPkg

#!/bin/bash

#	INFO.sh

source	/pkgscripts/include/pkg_util.sh

package="minimalPkg"

version="1.0.0000"

os_min_ver="7.0-40000"

displayname="Minimal	Package"

description="this	is	a	minimal	package"

arch="$(pkg_get_unified_platform)"

maintainer="Synology	Inc."

pkg_dump_info

Configure	Lifecycle	Behaviour
The	package	control	scripts	can	be	found	at	 	${project_path}/scripts/	.	You	can	control	the	behaviour	in	each	stage	such	as
calling	a	 	minimalPkg		program	on	package	start	/	stop.

#!/bin/sh

#	scripts/start-stop-status

case	$1	in

				start)

								minimalPkg	"Start"

								echo	"Hello	World"	>	$SYNOPKG_TEMP_LOGFILE

								exit	0

				;;

				stop)

								minimalPkg	"Stop"

								echo	"Hello	World"	>	$SYNOPKG_TEMP_LOGFILE

								exit	0

				;;

				status)

								exit	0

				;;

esac

Write	a	program	and	configure	its	compilation	and	installation
It	is	common	to	bring	compiled	program	into	DSM	via	package.	You	can	just	write	your	program	in	C	and	add	a	Makefile	to
compile	your	programs.

//	minimalPkg.c

#include	<sys/sysinfo.h>

#include	<syslog.h>

#include	<stdio.h>

int	main(int	argc,	char**	argv)	{

				struct	sysinfo	info;

				int	ret;

				ret	=	sysinfo(&info);

				if	(ret	!=	0)	{

								syslog(LOG_SYSLOG,	"Failed	to	get	info\n");

								return	-1;

				}

				syslog(LOG_SYSLOG,	"[MinimalPkg]	%s	sample	package	...",	argv[1]);

				syslog(LOG_SYSLOG,	"[MinimalPkg]	Total	RAM:	%u\n",	(unsigned	int)	info.totalram);

				syslog(LOG_SYSLOG,	"[MinimalPkg]	Free	RAM:	%u\n",	(unsigned	int)	info.freeram);

				return	0;

}

#	Makefile

Your	First	Package

16

include	/env.mak

EXEC=	minimalPkg

OBJS=	minimalPkg.o

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$<	-o	$@	$(LDFLAGS)

install:	$(EXEC)

				mkdir	-p	$(DESTDIR)/usr/bin/

				install	$<	$(DESTDIR)/usr/bin/

clean:

				rm	-rf	*.o	$(EXEC)

Any	additional	files	(e.g.,	compiled	program,	media	resources)	should	be	packed	into	 	package.tgz		file	inside	 	.spk	.	We
provide	several	script	commands	to	do	such	operations.	In	this	example,	we	will	pack	compiled	 	minimalPkg		executable	via
	install		build	script.

#	install	(partial)

create_package_tgz()	{

				local	firewere_version=

				local	package_tgz_dir=/tmp/_package_tgz

				local	binary_dir=$package_tgz_dir/usr/bin

				rm	-rf	$package_tgz_dir	&&	mkdir	-p	$package_tgz_dir

				mkdir	-p	$binary_dir

				cp	-av	minimalPkg	$binary_dir

				make	install	DESTDIR="$package_tgz_dir"

				pkg_make_package	$package_tgz_dir	"${PKG_DIR}"

}

Build	And	Pack	The	Package

After	you	have	finished	preparing	the	package	source	code,	you	can	use	the	following	commands	to	build	and	pack	the	package
into	 	.spk		at	 	/toolkit/result_spk/${package}-${version}/*.spk	.

cd	/toolkit/pkgscripts-ng/

./PkgCreate.py	-v	7.0	-p	x64	minimalPkg	#	build

./PkgCreate.py	-v	7.0	-p	x64	-i	minimalPkg	#	install	(pack)

/toolkit/

├──	pkgscripts-ng/

├──	build_env/

│			└──	ds.${platform}-${version}

└──	result_spk/

				└──	${package}-${version}/

								└──	*.spk

Install	And	Test	The	Package
Go	to	DSM	>	Package	Center	>	Manual	Install	then	select	your	 	.spk		file	to	do	installation.

Your	First	Package

17

Once	you	have	installed	and	started	the	package,	you	can	see	its	message	on	UI	and	log	at	 	/var/log/messages	.

Read	More

Synology	Toolkit
Synology	Package
Synology	DSM	Integration
Package	Examples

Your	First	Package

18

Synology	Toolkit
In	this	section,	we	will	explain	the	workflow	of	Package	Toolkit.	If	you	want	to	build	a	Synology	Package	without	using	Package
Toolkit,	you	must:

Prepare	a	cross	compile	tool	chain
Prepare	a	build	environment
Prepare	metadata
Compile	source	code
Pack	the	package

Creating	a	package	manually	can	be	very	complex	for	most	developers,	so	we	recommended	using	the	Package	Toolkit	to	make
the	package	creation	process	easier.

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

└──	pkgscripts-ng/

				├──	EnvDeploy

				└──	PkgCreate.py

Create	Package	Workflow:
There	are	two	stages	in	the	 	PkgCreate.py		package	creation	process:

Build	Stage:	compile	your	project	and	all	dependent	projects	in	the	correct	order.
Pack	Stage:	pack	your	project	into	an	 	.spk		file

To	create	your	 	.spk		file	with	PkgCreate.py	properly,	you	need	to	provide	additional	configuration	files	and	build	scripts	to
describe	how	to	build	your	project.	These	files	are	put	in	a	folder	named	“SynoBuildConf”	under	your	project.

	SynoBuildConf/depends	:	defines	the	dependency	of	your	project.	For	further	details,	please	refer	to	Build	Stage
	SynoBuildConf/build	:	specifies	PkgCreate.py	on	how	to	compile	your	project.	For	further	details,	please	refer	to	Build
Stage
	SynoBuildConf/install	:	specifies	PkgCreate.py	on	how	to	pack	your	SPK	file.	For	further	details,	please	refer	to	Pack
Stage
	SynoBuildConf/install-dev	:	similar	to	SynoBuildConf/install,	but	this	will	pack	your	 	.spk		file	in	chroot	environment
rather	than	general	DSM	system.	For	further	details,	please	refer	to	Compile	Open	Source	Project:	nmap.

Synology	Toolkit

19

Synology	Toolkit

20

Build	Stage:
In	the	Build	Stage,	 	PkgCreate.py		will	compile	the	project	and	its	dependent	projects.	Please	note	that	in	this	stage,
	PkgCreate.py		depends	on	two	build	scripts	(SynoBuildConf/build		and	 	SynoBuildConf/depends)	to	get	the	necessary
information.

PkgCreate.py	-v	${version}	-p	${platform}	${project}	#	build	project	in	specific	platform	version

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──${project}/

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Build	Stage	Workflow:

1.	 Based	on	your	 	SynoBuildConf/depend	,	 	PkgCreate.py		will	locate	the	target	DSM	version	from	[default]	section.
2.	 	PkgCreate.py		will	resolve	the	projects	you	depend	on.
3.	 Your	project	and	the	dependent	projects	which	are	placed	under	 	/toolkit/source		will	be	hard-linked	to

	/toolkit/build_env/ds.${platform}/source	.
4.	 Their	 	SynoBuildConf/build		will	be	executed	in	order	according	to	their	dependency	based	on	each

	SynoBuildConf/depend	.
5.	 If	your	project	is	needed	by	other	project	for	cross	compiling,	you	may	add	 	SynoBuildConf/install-dev		script.	 	install-

dev		script	will	install	cross	compiled	product	into	platform	chroot.

Note:	 	SynoBuildConf/build		is	executed	under	chroot	environment	/toolkit/build_env/ds.${platform}.

Build	Stage

21

SynoBuildConf/depends

	PkgCreate.py		will	resolve	your	dependency	according	to	this	configuration	file.	You	need	to	specify	your	project	dependency
and	the	build	environment	of	your	project	in	this	file.	For	example:

[BuildDependent]

#	each	line	here	is	a	dependent	project

[ReferenceOnly]

#	each	line	here	is	a	project	for	reference	only	but	no	need	to	be	built

[default]

all="7.0"			#	toolkit	environment	version	of	specific	platform.	(all	platform	use	7.0	toolkit	environment)

There	are	three	fields	in	 	SynoBuildConf/depends	:

BuildDependent:	Describes	other	projects	which	are	dependent	on	this	project.	For	further	details	about	this	field,	please
refer	to	Compile	Open	Source	Project:	nmap.
ReferenceOnly:	Describes	other	projects	which	are	referred	by	this	project,	without	the	build	process.
default:	Describes	the	toolkit	environment.	This	section	is	a	necessary	field.	It	indicates	each	platform	to	build	against	some
DSM	version	and	the	key	"all"	means	all	platform	use	this	version	by	default.

You	can	use	 	ProjDepends.py		script	to	see	whether	the	dependency	order	of	your	projects	is	correct.	Option	 	-x0		will	traverse
all	dependent	projects	of	${project}.

cd	/toolkit/pkgscripts-ng

./ProjDepends.py	-x0	${project}

Build	Stage

22

If	your	application	contains	more	than	one	project,	put	them	in	 	/toolkit/source		and	edit	 	SynoBuildConf		accordingly	for	each
of	them.	For	advanced	usage,	you	may	refer	to	Compile	Open	Source	Project	and	References.

SynoBuildConf/build

	SynoBuildConf/build		is	a	shell	script	that	tells	 	PkgCreate.py		how	to	compile	your	project.	The	current	working	directory	of
this	shell	script	is	located	in	 	/source/${project}		under	chroot	environment.

All	pre-built	binaries,	headers,	and	libraries	are	under	cross	compiler	sysroot	in	chroot	environment.	Since	sysroot	is	the	default
search	path	of	cross	compiler,	you	do	not	need	to	provide	 	-I		or	 	-L		to	 	CFLAGS		or	 	LDFLAGS	.

Variables:

You	can	also	find	most	of	them	in	 	/toolkit/build_env/ds.${platform}-${version}/{env.mak,env32/64.mak}	.	They	can	be
used	in	 	SynoBuildConf/build	:

CC:	path	of	gcc	cross	compiler.
CXX:	path	of	g++	cross	compiler.
LD:	path	of	cross	compiler	linker.
CFLAGS:	global	cflags	includes.
AR:	path	of	cross	compiler	ar.
NM:	path	of	cross	compiler	nm.
STRIP:	path	of	cross	compiler	strip.
RANLIB:	path	of	cross	compiler	ranlib.
OBJDUMP:	path	of	cross	compiler	objdump.
LDFLAGS:	global	ldflags	includes.
ConfigOpt:	options	for	configure.
ARCH:	processor	architecture.
SYNO_PLATFORM:	Synology	platform.
DSM_SHLIB_MAJOR:	major	number	of	DSM	(integer).
DSM_SHLIB_MINOR:	minor	number	of	DSM	(integer).
DSM_SHLIB_NUM:	build	number	of	DSM	(integer).
ToolChainSysRoot:	cross	compiler	sysroot	path.
SysRootPrefix:	cross	compiler	sysroot	concat	with	prefix	/usr.
SysRootInclude:	cross	compiler	sysroot	concat	with	include_dir	/usr/include.
SysRootLib:	cross	compiler	sysroot	concat	with	lib_dir	/usr/lib.

#	SynoBuildConf/build

case	${MakeClean}	in

							[Yy][Ee][Ss])

															make	distclean

															;;

esac

make	${MAKE_FLAGS}

The	above	example	calls	the	 	make		command	and	compiles	your	project	according	to	your	Makefile	located	in
	/source/${project}	.

Synology	toolkit	environment	has	included	selected	prebuild	projects.	You	can	enter	the	chroot	and	use	following	commands	to
check	if	needed	header	or	project	is	provided	by	toolkit.

##	inner	chroot

Build	Stage

23

dpkg	-l		#	list	all	dpkg	projects.

dpkg	-L	{project	dev}	#	list	project	install	files

dpkg	-S	{header/library	pattern}	#	search	header/library	pattern.

For	example,	the	project	needs	 	zlib.h		and	 	libz.so		in	the	build	stage.	Use	following	command	to	check	if	zlib	and	its
component	are	installed	in	chroot.

chroot	/tookit/build_env/ds.x64-7.0/

##	inner	chroot

>>	dpkg	-l	|	grep	zlib

ii		zlib-1.x-x64-dev								7.0-7274							all													Synology	build-time	library

>>	dpkg	-L	zlib-1.x-x64-dev

/.

/usr

/usr/local

/usr/local/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.a

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig/zlib.pc

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zconf.h

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zlib.h

>>	dpkg	-S	zlib.so

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

Some	open	source	projects	require	to	use	other	projects'	cross	compiled	product	while	building	their	own	.	For	example,	 	python	
needs	 	libffi		and	 	zlib		while	configure,	we	need	to	provide	those	two	project	before	build	 	python	.	You	can	install	the	cross
compiled	product	into	the	destination	you	want	in	build	script.	Please	refer	to	Compile	Open	Source	Project:	nmap	for	more
information.

Makefile

The	following	example	shows	a	 	Makefile	.	Most	of	the	content	contains	typical	makefile	rules.	Note	that	when	writing	your
project	 	Makefile	,	you	can	utilize	pre-defined	variables	in	 	/env.mak	.

##	You	can	use	CC	CFALGS	LD	LDFLAGS	CXX	CXXFLAGS	AR	RANLIB	READELF	STRIP	after	include	env.mak

include	/env.mak

EXEC=	minimalPkg

OBJS=	minimalPkg.o

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$<	-o	$@	$(LDFLAGS)

install:	$(EXEC)

				mkdir	-p	$(DESTDIR)/usr/bin/

				install	$<	$(DESTDIR)/usr/bin/

clean:

Build	Stage

24

				rm	-rf	*.o	$(EXEC)

For	more	detailed	descriptions	about	makefile,	please	refer	to	the	article	here.

Build	Stage

25

https://www.gnu.org/software/make/manual/html_node/Makefiles.html

Pack	Stage:
In	the	Pack	Stage,	 	PkgCreate.py		packs	all	the	necessary	files	according	to	your	metadata	and	creates	a	 	.spk		at
	/toolkit/result_spk	.	If	you	want	 	PkgCreate.py		to	enter	the	Pack	Stage	without	the	Build	Stage,	simply	run	PkgCreate.py
with	the 	-i		option.

cd	/toolkit

pkgscripts-ng/PkgCreate.py	-i	${project}

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──${project}/

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Pack	Stage	Work	Flow:

1.	 	PkgCreate.py		will	execute	the	build	script	 	SynoBuildConf/install	.
i.	 Create	 	INFO		file	by	using	 	INFO.sh	.
ii.	 Move	necessary	files	to	a	temporary	folder,	 	/tmp/_install	,	for	instance,	and	create	 	package.tgz	.
iii.	 Move	necessary	metadata	and	resources	to	the	temporary	folder,	 	/tmp/_pkg	,	for	instance,	and	create	the	 	.spk		file.

2.	 	PkgCreate.py		will	sign	the	newly	created	 	.spk		file	with	a	gpg	key	which	is	placed	under	 	/root/		(the	package	signing
mechanism	is	deprecated	after	DSM7.0).

Pack	Stage

26

SynoBuildConf/install

This	file	must	be	written	in	bash	and	indicates	on	how	to	pack	your	project.	The	current	working	directory	is
	/source/${project}		under	chroot	environment.	If	this	is	the	top	project	of	your	package,	this	file	will	define	how	to	create	the
	.spk		file,	including	directory	structure	and	the	 	INFO		file.

#!/bin/bash

###	Use	PKG_DIR	as	working	directory.

PKG_DIR=/tmp/_test_spk

rm	-rf	$PKG_DIR

mkdir	-p	$PKG_DIR

###	get	spk	packing	functions

source	/pkgscripts-ng/include/pkg_util.sh

create_inner_tarball()	{

				local	inner_tarball_dir=/tmp/_inner_tarball

				###	clear	destination	directory

				rm	-rf	$inner_tarball_dir	&&	mkdir	-p	$inner_tarball_dir

				###	install	needed	file	into	PKG_DIR

				make	install	DESTDIR="$inner_tarball_dir"

				###	create	package.txz:	$1=source_dir,	$2=dest_dir

				pkg_make_inner_tarball	$inner_tarball_dir	"${PKG_DIR}"

}

create_spk(){

				local	scripts_dir=$PKG_DIR/scripts

				###	Copy	Package	Center	scripts	to	PKG_DIR

				mkdir	-p	$scripts_dir

Pack	Stage

27

				cp	-av	scripts/*	$scripts_dir

				###	Copy	package	icon

				cp	-av	PACKAGE_ICON*.PNG	$PKG_DIR

				###	Generate	INFO	file

				./INFO.sh	>	INFO

				cp	INFO	$PKG_DIR/INFO

				###	Create	the	final	spk.

				#	pkg_make_spk	<source	path>	<dest	path>	<spk	file	name>

				#	Please	put	the	result	spk	into	/image/packages

				#	spk	name	functions:	pkg_get_spk_name	pkg_get_spk_unified_name	pkg_get_spk_family_name

				mkdir	-p	/image/packages

				pkg_make_spk	${PKG_DIR}	"/image/packages"	$(pkg_get_spk_family_name)

}

create_inner_tarball

create_spk

At	the	beginning,	the	script	called	the	PrepareDirs	function	which	will	prepare	the	necessary	folder	for	the	project.

After	created	the	folder,	the	script	called	SetupPackageFiles	to	move	necessary	resource	files	to	 	$INST_DIR		and	 	$PKG_DIR	.	In
this	step,	we	called	the	 	INFO.sh		file	to	create	the	 	INFO		file.	Although	you	may	put	the	codes	that	generate	the	 	INFO		file	in	the
	SynoBuildConf/install		script,	we	highly	recommend	that	you	create	the	INFO	seperately.	Generally,	we	name	it	 	INFO.sh	.
You	can	see	how	to	write	 	INFO.sh		in	the	following	subsections.

After	moving	the	resource	file	to	the	proper	location,	we	called	the	 	MakePackage		function	to	create	the	package.	We
included/sourced	a	script	called	 	pkg_util.sh		which	is	located	at	 	/pkgscripts-ng/include	.	The	 	pkg_make_package		and
	pkg_make_spk		defined	in	 	pkg_util.sh		can	help	to	create	 	package.tgz		and	 	.spk	.

	pkg_make_inner_tarball	$1	$2	:	Create	packages.tgz	of	$2	from	files	in	$1.
	pkg_make_spk	$1	$2	:	Create	spk	of	$2	from	files	in	$1.

INFO.sh
As	mentioned	earlier,	 	INFO.sh		is	just	an	optional	script.	You	can	create	the	 	INFO		file	by	hand	or	move	the	code	to
	SynoBuildConf/install	.	However,	we	strongly	recommend	that	you	utilize	 	INFO.sh		so	that	you	can	create	the	INFO	file
separately	from	 	SynoBuildConf/install	.

#!/bin/bash

source	/pkgscripts-ng/include/pkg_util.sh

package="minimalPkg"

version="1.0.0000"

displayname="Minimal	Package"

maintainer="Synology	Inc."

arch="$(pkg_get_unified_platform)"

description="this	is	a	minimal	package"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

The	above	code	is	just	an	example	to	show	some	important	variables	for	 	pkg_dump_info	.	If	you	want	to	know	more
details	about	the	 	INFO		file	and	each	fields,	please	refer	to	INFO.

Similar	to	 	SynoBuildConf/install	,	we	must	first	include	 	pkg_util.sh	.	After	that,	we	can	set	up	proper	variables	and	call	the
	pkg_dump_info		to	create	the	INFO	file	correctly.	As	you	may	have	noticed,	we	used	another	helper	function	called
	pkg_get_platform		to	set	the	architecture	variable.	This	variable	indicates	the	current	platform	we	are	building.

Pack	Stage

28

pkg_get_spk_platform:	Return	platform	for	“arch”	in	 	INFO	.
pkg_dump_info:	Dump	 	INFO		according	to	given	variables.

Remember	to	make	 	INFO.sh		be	executable	(e.g.,	 	chmod	+x	INFO.sh)

Spk	Packing	Functions

Synology	package	framework	provides	several	functions	to	improve	efficiency	of	packing	packages.	The	functions	such	as
generating	architecture	information	in	the	 	INFO		file,	separating	 	.spk		name	and	creating	 	.spk		will	be	enabled	after	import
	/pkgscripts-ng/include/pkg_util.sh	.

Spk	Platform	Functions

A	 	.spk		can	be	installed	on	one	or	more	platforms.	You	can	decide	which	platform	can	be	installd	via	 	INFO		file.

function	name Values Description

(No	function) noarch Package	only	contain	scripts.	spk	can	be	run	on	all	synology
Models.

pkg_get_platform_family x86_64	i686	armv7
armv5	ppc...

Unify	platforms	with	same	kernel	into	a	 	platform	family	.	The
package	can	run	on	same	family	of	synology	models.

pkg_get_spk_platform
bromolow
cedarview	qoriq
armadaxp...

Directly	output	the	platform	where	the	toolkit	environment	is	used.
The	package	can	only	run	on	the	specific	platform.

If	your	package	doesn't	have	any	native	binary,	you	can	use	 	noarch		as	the	platfrom	and	write	the	scripts	for	your	package.
Package	with	 	arch=noarch		can	be	installed	onto	any	synology	model.
If	your	package	doesn’t	have	any	kernel	related	functions,	the	package	can	run	on	the	same	architecture	platforms.	Use
function	 	pkg_get_platform_family		to	get	platform	family.	Package	can	be	installed	on	the	models	included	in	the	same
platform	family.	For	example,	package	with	 	arch=x86_64		can	be	install	onto	 	bromolow	x64	cedarview	dockerx64
broadwell		models.
If	your	package	contains	kernel	related	functions,	every	platforms	will	need	a	specific	spk.	Please	use	function
	pkg_get_spk_platform		to	get	the	platform(s)	which	is	compatiable	with	your	environment.

Spk	Naming	Functions

After	spk	generated,	we	need	to	distinguish	spk	name	by	platform.	We	can	use	spk	name	functions:

Function	name Corresponding
platform	function Example Description

pkg_get_spk_name pkg_get_spk_platform

minimalPkg-
bromolow-
1.0.0000.spk	/
minimalPkg-
cedarview-
1.0.0000.spk	...

Spk	name	depends	on	which	toolkit
environment	is	using.

pkg_get_spk_name noarch minimalPkg-
1.0.0000.spk

If	the	package	has
	platform="noarch"	,	this	function
will	output	spk	name	without
platform	info.

pkg_get_spk_family_name pkg_get_platform_family
minimalPkg-
x86_64-
1.0.0000.spk

Spk	name	will	be	unified	into
platform	family.	Same	platform
family	will	geneate	the	same	spk
name.	i.e	bromolow	and	x64	will
have	same	spk	name.

Pack	Stage

29

You	need	to	use	path	of	 	INFO		as	argument.	If	no	path	specified,	the	function	will	get	 	INFO		file	from	 	$PKG_DIR/INFO	
automatically.

Spk	Creation	Functions

Developer	can	use	 	pkg_make_spk		to	create	spk.

pkg_make_spk	$source_path	$dest_path	$spk_name

source_path	is	spk	source	directory.	All	spk	files	must	copy	into	this	direcotry	before	run	pkg_make_spk.
dest_path	is	target	spk	path.
spk_name	is	spk	name	with/without	platform	info.

Example:

pkg_make_spk	/tmp/_test_spk	"/image/packages"	$(pkg_get_spk_family_name)

Pack	Stage

30

Sign	Package	(only	for	DSM6.X)
Signing	mechanism	is	deprecated	after	DSM7.0,	you	don't	need	this	if	you	are	developing	package	for	DSM7.0

Between	DSM5.1	and	DSM6.X,	we	have	a	built-in	code	sign	mechanism	to	ensure	the	package's	publisher	integrity.	The	toolkit
has	a	 	CodeSign.php		script	to	sign	the	package	with	GnuPG	keys.	If	you	do	not	have	a	GPG	key,	you	will	need	to	generate	one.

Prepare	the	GPG	Key

If	you	have	your	own	GPG	key	(without	a	passphrase)	already,	you	will	need	to	put	the	private	key	under	 	/root/.gnupg		of
each	platform	(e.g.,	 	/toolkit/build_env/ds.${platform}-6.2/root/.gnupg/).

Generate	the	GPG	key

You	need	to	do	 	apt-get	install	gpg	gpg-agent		first.

gpg	--gen-key

>	Please	select	what	kind	of	key	you	want:

			(1)	RSA	and	RSA	(default)

>	choose	key	size	and	enter	your	name,	email

>	enter	a	passphrase:	just	press	Enter	without	typing	any	character

WARNING:	Please	make	sure	that	you	do	not	type	any	characters	in	the	passphrase	field,	otherwise	the	build	process	will
FAIL.

After	completing	the	steps	above,	the	key	will	be	generated	under	 	~/.gnupg	.	You	need	to	move	them	into	the	chroot
environment.

cp	~/.gnupg/*	/toolkit/build_env/ds.${platform}-6.2/root/.gnupg/

You	can	also	use	the	following	commands	to	verify	whether	the	key	has	successfully	imported	or	not.

cd	/toolkit/build_env/ds.${platform}-6.2/

chroot	.

gpg	-K

The	output	may	produce	the	following	message:

/root/.gnupg/secring.gpg

sec			2048R/145E0AFD	2015-12-21

uid																		Synology	Inc.	<synology_inc@synology.com>

ssb			2048R/E0C20F11	2015-12-21

Sign	the	package
If	you	want	 	PkgCreate.py		to	sign	the	package	automatically,	you	can	use	the	 	PkgCreate.py		without	the	 	--no-sign		option.
For	example,	the	following	command	indicates	 	PkgCreate.py		to	build	and	install	your	project	without	a	signature.

Sign	Package	(only	for	DSM6.X)

31

PkgCreate.py	-i	${project}

In	addition,	if	you	want	to	sign	the	package	on	your	own,	you	can	use	the	following	command	to	sign	your	package	manually.

chroot	/toolkit/build_env/ds.${platform}-${version}

php	/pkgscripts-ng/CodeSign.php	[option]	--sign=package-path

Options:

--keydir=keyrings	directory	(default	is	/root/.gnupg)

--keyfpr=key's	fingerprint	(default	is	"".	Under	this	circumstances,	we	will	using	the	first	key	in	the	key	dir

ectory	to	sign	the	package)

Examples:

php	/pkgscripts-ng/CodeSign.php	--sign=phpBB-3.0.12-0031.spk

php	/pkgscripts-ng/CodeSign.php	--keydir=/root/.gpg	--keyfpr=C1BF63CD	--sign=phpBB-3.0.12-0031.spk

Sign	Package	(only	for	DSM6.X)

32

References
This	section	illustrates	advanced	types	of	usage	for	the	Package	Toolkit.

PkgCreate.py	Command	Option	List

The	following	table	lists	some	of	the	PkgCreate.py	commands.

Option
Name Option	Purpose

(default) Run	build	stage	only	which	include	link	and	compile	source	code.	It's	the	same	as	-U	option.

-p Specify	the	platform	you	want	to	pack	your	project.

-x Build	dependent	project	level.	Each	project	is	built	according	to	their	own	 	SynoBuildConf/build		(e.g.,	-
x0,	-x1)

-c Run	both	build	stage	and	pack	stage	which	include	link	source	code,	compile	source	code,	pack	package
and	sign	the	final	spk.

-U Run	build	stage	only	which	includes	link	and	compile	source	code.

-l Run	build	stage	only,	but	will	only	link	your	source	code.

-L Run	build	stage	only,	but	will	compile	your	source	code	only.

-I Run	pack	stage	only,	which	will	pack	and	sign	your	spk.

--no-sign Tells	PkgCreat.py	not	to	sign	your	spk	file.	for	example,	PkgCreat.py	-I	--no-sign	${project}

-z Run	all	platforms	concurrently.

-J Compile	your	project	with	-J	make	command	options.

-S Disable	silent	make.

The	following	table	shows	the	relationship	between	command	options	in	different	stages.	You	can	choose	the	proper	options
based	on	your	needs.	Option	 	-c		is	enough	for	most	cases.

Stage Action (default) -l -L -U -I	--no-sign -I -c

Build	Stage Link	Source	code Yes Yes No Yes No No Yes

Build	Stage Compile	Source	code Yes No Yes Yes No No Yes

Pack	Stage Pack	Package No No No No Yes Yes Yes

Pack	Stage Sign	Package No No No No No Yes Yes

Platform-Specific	Dependency

Platform-specific	dependency	means	you	can	have	several	dependent	projects	for	different	platforms	by	appending
":${platform}"	to	the	following	sections:	BuildDependent	and	ReferenceOnly.	The	following	example	shows	816x	and
aramda370	projects	that	are	on	libbar-1.0.

#	SynoBuildConf/depends

[BuildDependent]

References

33

libfoo-1.0

[BuildDependent:816x,armada370]		

libfoo-1.0

libbar-1.0

[default]

all="7.0"

Collect	the	SPK	File	in	Your	Own	Way
By	default,	PkgCreate.py	will	move	the	SPK	file	to	/toolkit/result_spk	according	to	/toolkit/build_env/ds.${platform}-
${version}/source/${project}/INFO.	You	can	have	your	own	collect	operation	by	adding	a	hook,	SynoBuildConf/collect.
SynoBuildConf/collect	can	be	any	executable	shell	script	(so	remember	to	chmod	+x)	and	PkgCreate.py	will	pass	the	following
environment	variables	to	it:

SPK_SRC_DIR:	Source	folder	of	target	SPK	file.
SPK_DST_DIR:	Default	destination	folder	to	put	SPK	file.
SPK_VERSION:	Version	of	package	(according	to	INFO).

The	current	working	directory	of	SynoBuildConf/collect	is	/source/${project}	will	be	under	chroot	environment.

References

34

Package	Introduction
In	this	section,	you	will	learn	the	layout	of	synology	package	(.spk)	and	the	meaning	of	each	file.

spk

├──	INFO

├──	package.tgz

├──	scripts

│			├──	postinst

│			├──	postuninst

│			├──	postupgrade

│			├──	preinst

│			├──	preuninst

│			├──	preupgrade

│			└──	start-stop-status

├──	conf

│			├──	privilege

│			└──	resource

├──	WIZARD_UIFILES

│			├──	install_uifile

│			└──	uninstall_uifile

├──	LICENSE

├──	PACKAGE_ICON.PNG

└──	PACKAGE_ICON_256.PNG

Package	Structure
A	Synology	package	contains	the	following	files:

File/Folder	Name
(case	sensitive) Required Description File/Folder

Type
DSM

Requirement

INFO O This	file	describes	the	properties	of
a	package.

Properties
File 2.0-0731

package.tgz O

This	is	a	compressed	file	containing
all	the	files	that	should	be	extracted
into	the	system,	such	as	executable
binaries,	libraries,	or	UI	files.

TGZ	File 2.0-0731

scripts O
This	folder	contains	shell	scripts
which	control	the	lifecycle	of	a
package.

Folder 2.0-0731

conf O This	folder	contains	additional
configurations. Folder 4.2-3160

WIZARD_UIFILES X

This	folder	contains	wizard	UI	files
which	are	used	to	guide	package
user	in	the	installation	/
uninstallation	procedure.

Folder 3.2-1922

LICENSE X
The	file	content	will	show	on	UI	in
the	installation	procedure.	It	must	be
less	than	1	MB.

Text	File 3.2-1922

PACKAGE_ICON.PNG O

PNG	format	image	shown	in
Package	Center
For	DSM	6.x,	the	dimension	should
be	72	x	72.
For	DSM	7.0	or	above,	the	image
dimension	should	be	64	x	64.

PNG	file 3.2-1922

Synology	Package

35

dimension	should	be	64	x	64.

PACKAGE_ICON_256.PNG O

PNG	format	image	shown	in

Package	Center.	Its	dimension
should	be	256	x	256.

PNG	file 5.0-4400

To	create	such	package	layout,	please	refer	to	the	Pack	Stage	for	detailed	steps.

Synology	Package

36

INFO
This	file	describes	the	properties	of	a	package

INFO	Field	Format:

Each	property	is	defined	as	key/value	pair	separated	by	an	equals	sign

key=value

INFO	Field	List:

You	can	define	properties	according	to	the	requirements:

Necessary	Fields
Optional	Fields

thirdparty="yes"

maintainer="mycompany"

description="mydescription"

distributor="mycompany"

package="mypackagename"

silent_install="yes"

silent_uninstall="yes"

silent_upgrade="yes"

os_min_ver="7.0-40000"

version="0.0.1-0001"

arch="noarch"

How	to	write	an	INFO	File
Instead	of	writing	the	INFO	file	manually,	you	can	use	the	helper	functions	in	Package	Toolkit	to	generate	some	fields
programmatically.	Please	refer	to	INFO.sh	for	more	information.

INFO

37

Field	Name:	package

Description:	Package	identity.	No	more	than	one	version	of	a	package	can	exist	at	the	same	time	in	the	end	user's	DSM;
therefore,	the	identification	is	unique	to	identify	your	package.	Besides,	Package	Center	will	create	a	/var/packages/[package
identity]	folder	to	put	package	files.

Note:	This	value	of	the	key	cannot	contain	any	of	these	special	characters	:,	/,	>,	<,	|	or	=.

Value:	String

Default	Value:	(Empty)

Example:

package="DownloadStation"

DSM	Requirement:	2.0-0731

Field	Name:	version
Description:	Package	version.	End	users	can	identify	the	package	version.

Note:

1.	 Each	version	delimiter	is	only	allowed	to	be	.	-	or	_.
2.	 Each	version	number	which	is	delimited	by	delimiteris	only	allowed	to	be	number

Value:	String

Default	Value:	(Empty)

Example:

version="3.6-3263"

DSM	Requirement:	2.0-0731

Field	Name:	os_min_ver

Description:	Earliest	version	of	DSM	that	is	required	to	run	the	package.	The	value	should	be	at	least	 	7.0-40000		after
DSM	7.0.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_min_ver="7.0-40000"

DSM	Requirement:	6.1-14715

Field	Name:	description

Description:	Package	Center	shows	a	short	description	of	the	package.

Necessary	Fields

38

Value:	String

Default	Value:	(Empty)

Example:

description	=	"Download	Station	is	a	web-based	download	application	which	allows	you	to	download	files	from

	the	Internet	through	BT,	FTP,	HTTP,	NZB,	Thunder,	FlashGet,	QQDL,	and	eMule,	and	subscribe	to	RSS	feeds	to

	keep	you	updated	on	the	hottest	or	latest	BT.	It	offers	the	auto	unzip	service	to	help	you	extract	compres

sed	files	to	your	Synology	NAS	whenever	files	are	downloaded.	With	Download	Station,	you	can	download	files

	from	multiple	file	hosting	sites,	and	search	for	torrent	files	via	system	default	search	engines	as	well	a

s	self-added	engines	with	the	BT	search	function."

DSM	Requirement:	2.3-1118

DSM	Requirement:	4.2-3160

Field	Name:	arch
Description:	List	the	CPU	architectures	which	can	be	used	to	install	the	package.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)

Default	Value:	noarch

Note:

1.	 "noarch"	means	the	package	can	be	installed	and	work	in	any	platform.	For	example,	the	package	is	written	in	PHP	or
shell	script.

2.	 Please	not	pack	all	binary	files	with	different	platforms	to	one	package	spk	file.

Example:

arch="noarch"

or

arch="x86_64	alpine"

DSM	Requirement:	2.0-0731

Field	Name:	maintainer

Description:	Package	Center	shows	the	developer	of	the	package.

Value:	String

Default	Value:	(Empty)

Example:

maintainer="Synology	Inc."

DSM	Requirement:	2.0-0731

Necessary	Fields

39

Field	Name:	displayname

Description:	Package	Center	shows	the	name	of	the	package.
Note:	If	displayname	key	is	empty,	Package	Center	will	display	the	value	of	package	key.

Value:	String
Default	Value:	The	value	of	package	key
Example:	None
DSM	Requirement:	2.3-1118

Field	Name:	displayname_[DSM	language]

Description:	Package	Center	shows	the	name	in	the	DSM	language	set	by	the	end-user.	DSM	supports	the	following
languages:

enu	(English)
cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)
ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)
plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String
Default	Value:	package	name
Example:

displayname_enu="Hello	World"

displayname_cht="你好"

DSM	Requirement:	2.3-1118

Field	Name:	description_[DSM	language]

Description:	Package	Center	shows	a	short	description	in	the	DSM	language	set	by	the	end-user.
DSM	supports	the	following	languages:

enu	(English)

Optional	Fields

40

cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)
ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)
plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String

Default	Value:	description
Example:

description_enu="Hello	World"

description_cht="你好"

DSM	Requirement:	2.3-1118

Field	Name:	maintainer_url
Description:	If	a	package	has	a	developer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)
Example:

maintainer_url="http://www.synology.com"

DSM	Requirement:	4.2-3160

Field	Name:	distributor
Description:	Package	Center	shows	the	publisher	of	the	package.
Value:	String
Default	Value:	(Empty)
Example:

distributor="Synology	Inc."

DSM	Requirement:	4.2-3160

Optional	Fields

41

Field	Name:	distributor_url

Description:	If	a	package	is	installed	and	has	a	distributer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)
Example:

distributor_url	="http://www.synology.com/enu/apps/3rd-party_application_integration.php"

DSM	Requirement:	4.2-3160

Field	Name:	support_url
Description:	Package	Center	shows	a	support	link	to	allow	users	to	seek	technical	support	when	needed.

Value:	String

Default	Value:	(Empty)

Example:

support_url="https://myds.synology.com/support/support_form.php".

Field	Name:	support_center

Description:	If	set	to	“yes,”	Package	Center	displays	a	link	to	make	the	end	user	launch	Synology	Support	Center
Application	when	your	package	is	installed.

Note:	If	set	to	“yes,”	the	report_url	link	won’t	show	in	Package	Center.

Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	5.0-4458

Field	Name:	model

Description:	List	of	models	on	which	packages	can	be	installed	in	spesific	models.	It	is	organized	by	Synology	string,
architecture	and	model	name.
Value:	(models	are	separated	with	a	space,	e.g.	synology_88f6281_209,	synology_cedarview_rs812rp+,
synology_x86_411+II,	synology_bromolow_3612xs,	synology_cedarview_rs812rp+,	…)
Default	Value:	(Empty)
Example:

model="synology_bromolow_3612xs	synology_cedarview_rs812rp+".

DSM	Requirement:	4.0-2219

Field	Name:	exclude_arch
Description:	List	the	CPU	architectures	where	the	package	can't	be	used	to	install	the	package.

Optional	Fields

42

Note:	Be	careful	to	use	this	exclude_arch	field.	If	the	package	has	different	exclude_arch	value	in	the	different
versions,	the	end	user	can	install	the	package	in	the	specific	version	without	some	arch	values	of	exclude_arch.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	6.0
Example:

exclude_arch="bromolow	cedarview".

Field	Name:	checksum

Description:	Contains	MD5	string	to	verify	the	package.tgz.
Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	adminport

Description:	A	package	listens	to	a	specific	port	to	display	its	own	UI.	If	the	package	is	defined	by	a	port,	a	link	will	be
opened	when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	0~65536
Default	Value:	80
Example:

adminport="9002"

DSM	Requirement:	2.0-0731

Field	Name:	adminurl
Description:	If	a	package	is	installed	and	has	a	webpage,	a	link	will	be	opened	when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	String
Default	Value:	(Empty)
Example:

adminurl="web"

DSM	Requirement:	2.3-1118

Field	Name:	adminprotocol

Description:	A	package	uses	a	specific	protocol	to	display	its	own	UI.	If	a	package	is	installed	and	has	a	webpage,	a	protocol

Optional	Fields

43

will	be	opened	when	the	package	is	started.
Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	http	/	https	
(Separated	with	a	space)
Default	Value:	http
Example:

adminprotocol="http"

DSM	Requirement:	3.2-1922

Field	Name:	dsmuidir
Description:	DSM	UI	folder	name	in	package.tgz.	The	UI	folder	of	the	package	in	/var/packges/[packge
name]/target/[dsmuidir]	will	be	automatically	linked	to	the	DSM	UI	folder	in
/usr/syno/synoman/webman/3rdparty/[linkname]	to	show	your	package's	shortcut	in	DSM.

Note:

1.	 If	only	one	path	is	provided,	the	path	will	be	the	relative	path	to	dsmuidir	in	package	target	and	the	link	name
will	be	package	name.

2.	 If	multiple	key:value	pairs	are	provided,	the	key	will	be	the	name	of	link	and	the	value	will	be	the	relative	path	to
dsmuidir	in	package	target.

3.	 Please	refer	Integrate	Your	package	into	DSM	for	more	information.
Value:	String
Default	Value:	(Empty)
Example:

dsmuidir="ui"

dsmuidir="MyLinkName1:ui/app1	MyLinkName2:ui/app2"

DSM	Requirement:	3.2-1922	for	single	value	7.0-40731	for	multiple	values

Field	Name:	dsmappname

Description:	The	value	of	each	individual	application	will	be	equal	to	the	unique	property	name	in	DSM’s	config	file	so	as
to	be	integrated	into	Synology	DiskStation.

Note:	Please	refer	Config	in	Integrate	Your	package	into	DSM	chapter	for	more	information.

Value:	(Separated	with	a	space)
Default	Value:	(Empty)
Example:

dsmappname="SYNO.SDS.PhotoStation	SYNO.SDS.PersonalPhotoStation"

DSM	Requirement:	3.2-1922

Field	Name:	dsmapppage

Description:	The	application	page	to	open	when	click	on	package	open	button	(should	be	used	with	dsmappname	key)
Value:	Page	name

Note:	page	name	corresponds	to	PageListAppWindow's	fn	value	when	calling	SYNO.SDS.AppLaunch

Optional	Fields

44

Default	Value:	(Empty)
Example:

dsmappname="SYNO.SDS.AdminCenter.Application"

dsmapppage="SYNO.SDS.AdminCenter.FileService.Main"

DSM	Requirement:	7.0-40332

Field	Name:	dsmapplaunchname

Description:	The	value	will	be	used	to	launch	desktop	app,	and	it	has	higher	priority	than	dsmappname.
Value:	App	name
Default	Value:	same	as	 	dsmappname	
Example:

dsmapplaunchname="SYNO.SDS.AdminCenter.Application"

DSM	Requirement:	7.0-40796

Field	Name:	checkport

Description:	Check	if	there	is	any	conflict	between	the	adminport	and	the	ports	which	are	reserved	or	are	listening	on	DSM
except	web-service	ports	(e.g.	80,	443)	and	DSM	ports	(e.g.	5000,	5001).
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	startable
Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This
key	is	set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	Deprecated	after	6.1-14907,	use	ctl_stop	instead.	
If	“startable”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	ctl_stop

Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This
key	is	set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	If	“ctl_stop”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.1-14907

Optional	Fields

45

Field	Name:	ctl_uninstall

Description:	If	this	key	is	set	to	"no",	the	end-user	cannot	uninstall	the	package	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.1-14907

Field	Name:	ctl_install

Description:	If	this	key	is	set	to	"no",	only	the	environment	having	this	package	installed	can	see	this	package	in	Package
Center	Online	Market
Value:	"yes"/"no"
Default	Value:	"yes"
Example:

ctl_install="no"

DSM	Requirement:	6.2-23651

Field	Name:	precheckstartstop
Description:	If	set	to	"yes",	let	start-stop-status	with	prestart	or	prestop	argument	run	before	start	or	stop	the	package.	Please
refer	to	start-stop-status	in	scripts	for	more	information.
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.0

Field	Name:	helpurl
Description:	If	a	package	is	installed	and	has	a	"help"	webpage,	Package	Center	will	display	a	hyperlink	to	the	user.
Value:	String
Default	Value:	(Empty)
Example:

helpurl="https://www.synology.com/en-global/knowledgebase"

DSM	Requirement:	3.2-1922

Field	Name:	beta

Description:	If	this	package	is	considered	the	beta	version,	the	beta	information	will	be	shown	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	6.0

Optional	Fields

46

Field	Name:	report_url

Description:	If	a	package	is	a	beta	version	and	has	a	"report"	webpage,	Package	Center	will	display	a	hyperlink.	If	this
package	is	considered	the	beta	version,	the	beta	information	will	be	also	be	shown	in	Package	Center.
Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_reboot

Description:	Reboot	DiskStation	after	installing	or	upgrading	the	package.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_dep_packages

Description:	Before	a	package	is	installed	or	upgraded,	these	packages	must	be	installed	first.	In	addition,	the	order	of
starting	or	stopping	packages	is	also	dependent	on	it.	The	format	consists	of	a	package	name.	If	more	than	one	dependent
packages	are	required,	the	package	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.
install_dep_packages="packageA".	If	a	specific	version	range	is	required,	package	name	will	be	followed	by	one	of	the
special	characters	=,	<,	>,	>=,	<=	and	package	version	which	is	composed	by	number	and	periods,	e.g.
install_dep_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Don’t	use	<=	and	>=	if	a	package	can	be	installed	in
DSM	4.1	or	older	because	it	cannot	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Value:	Package	names
Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_dep_packages="packageA"

or

install_dep_packages="packageA>2.2.2:packageB"

DSM	Requirement:	3.2-1922

Field	Name:	install_conflict_packages

Description:	Before	your	package	is	installed	or	upgraded,	these	conflict	packages	cannot	be	installed.	The	format	consists
of	a	package	name,	e.g.	install_conflict_packages="packageA".	If	more	than	one	conflict	packages	are	required	with	the
format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_conflict_packages="packageA:packageB".
If	a	specific	version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and
package	version	which	is	composed	by	number	and	periods,	e.g.	install_conflict_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Do	not	use	<=	and	>=	if	a	package	can	be	installed	in
DSM	4.1	because	it	can’t	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Value:	Package	names

Optional	Fields

47

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_conflict_packages="packageA:packageB"

or

install_conflict_packages="packageA>2.2.2:packageB"

DSM	Requirement:	4.1-2851

Field	Name:	install_break_packages
Description:	After	your	package	is	installed	or	upgraded,	these	to-be-broken	packages	will	be	stopped	and	remain	broken
during	the	existence	of	your	package.	The	format	consists	of	a	package	name,	e.g.	install_break_packages="packageA".	If
more	than	one	to-be-broken	packages	are	required	with	the	format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,
e.g.	install_break_packages="packageA:packageB".	If	a	specific	version	range	is	required,	package	name	will	be
followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which	is	composed	by	number	and	periods,	e.g.
install_break_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_break_packages="packageA:packageB"

or

install_break_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	install_replace_packages

Description:	After	your	package	is	installed	or	upgraded,	these	to-be-replaced	packages	will	be	removed.	The	format
consists	of	a	package	name,	e.g.	install_replace_packages="packageA".	If	more	than	one	to-be-replaced	packages	are
required	with	the	format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.
install_replace_packages="packageA:packageB".	If	a	specific	version	range	is	required,	package	name	will	be	followed
by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which	is	composed	by	number	and	periods,	e.g.
install_replace_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_replace_packages="packageA:packageB"

or

install_replace_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	instuninst_restart_services

Optional	Fields

48

Description:	Reload	services	after	installing,	upgrading	and	uninstalling	the	package.
Note:

1.	 If	the	service	is	not	enabled	or	started	by	the	end-user,	services	won't	be	reloaded
2.	 If	the	install_reboot	is	set	to	“yes”,	this	value	is	ignored	in	the	installation	process.

Value:	
DSM	4.3	or	older:	apache-sys,	apache-web,	mdns,	samba,	db,	applenetwork,	cron,	nfs,	firewall
DSM	5.0	~	DSM	5.2:	apache-sys,	apache-web,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall
DSM	6.0:	nginx,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

instuninst_restart_services="apache-sys	apache-web"

DSM	Requirement:	3.2-1922

Field	Name:	startstop_restart_services

Description:	Reload	services	after	starting	and	stopping	the	package.
Note:

1.	 If	the	service	is	not	enabled	or	started	by	the	end-user,	services	won't	be	reloaded.
2.	 If	startable	is	set	to	“no”,	the	value	is	ignored.

Value:
DSM	4.3	or	older:	apache-sys,	apache-web,	mdns,	samba,	db,	applenetwork,	cron,	nfs,	firewall
DSM	5.0	~	DSM	5.2:	apache-sys,	apache-web,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall
DSM	6.0:	nginx,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

startstop_restart_services="apache-sys	apache-web"

DSM	Requirement:	3.2-1922

Field	Name:	install_dep_services

Description:	Before	the	package	is	installed	or	upgraded,	these	services	must	be	started	or	enabled	by	the	end-user.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

Optional	Fields

49

DSM	Requirement:	3.2-1922

Field	Name:	start_dep_services

Description:	Before	the	package	is	started,	these	services	must	be	started	or	enabled	by	the	end-user.	If	startable	is	set	to
“no”,	this	value	is	ignored.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

DSM	Requirement:	3.2-1922

Field	Name:	extractsize
Description:	This	value	indicates	the	minimal	space	to	install	a	package.	It	will	be	used	to	prompt	the	user	if	there	is	enough
free	space	to	install	it.

Note:

1.	 In	DSM	5.2	or	order,	the	size	based	on	byte	unit.
2.	 In	DSM	6.0	or	newer,	the	size	based	on	kilobyte	unit.

Value:	Size	unit
Default	Value:	The	byte	size	of	SPK	file	of	package
Example:

extractsize="253796"

DSM	Requirement:	4.0-2166

Field	Name:	support_conf_folder

Description:	In	DSM	5.2	or	order,	if	you	want	to	use	some	special	configuration	files	within	a	"conf"	folder,	this	value	must
be	set	to	"yes".	More	details	are	given	in	the	"conf"	section.	Howerver,	in	DSM	6.0	or	newer,	you	don't	need	to	define	it
anymore.

Note:	Deprecated	in	DSM	6.0

Value:	"yes"/"no"
Default	Value:	"no"
Example:

support_conf_folder="yes"

DSM	Requirement:	4.2-3160	~	5.2

Optional	Fields

50

Field	Name:	install_type

Description:	If	set	to	“system”,	your	package	will	be	installed	in	the	root	file	system,	/usr/local/packages/@appstore/,	even
if	there	is	no	volume.

Note:	Be	careful	when	setting	this,	as	it	may	result	in	the	DiskStation	crashing	if	your	package	runs	out	of	the	space	in
the	root	file	system.

Value:	"system"
Default	Value:	(Empty)
Example:

install_type="system"

DSM	Requirement:	5.0-4458

Field	Name:	silent_install

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	installed	without	the	package	wizard	in	the	background.	This
allows	CMS	(Central	Management	System)	to	distribute	package	installation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_install="yes"

DSM	Requirement:	5.0-4458

Field	Name:	silent_upgrade

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	upgraded	without	the	package	wizard	in	the	background.	End	user
cannot	modify	any	information	for	upgrading.	This	allows	not	only	your	package	to	be	upgraded	automatically	but	also	for
CMS	(Central	Management	System)	to	distribute	package	upgrades	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_upgrade="yes"

DSM	Requirement:	5.0-4458

Field	Name:	silent_uninstall
Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	uninstalled	without	the	package	wizard	in	the	background.	This
allows	CMS	(Central	Management	System)	to	distribute	package	uninstallation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_uninstall="yes"

Optional	Fields

51

DSM	Requirement:	5.0-4458

Field	Name:	auto_upgrade_from

Description:	It	is	set	to	a	version	of	your	package.	If	your	package	is	set	to	silent_upgrade="yes"	and	the	value	is	set,
Package	Center	only	upgrades	your	package	automatically	from	the	installed	package	with	the	version	or	the	newer	version.
However,	if	the	end	user	install	a	older	version	than	it,	Package	Center	won't	upgrade	it	automatically	and	the	user	must
upgrade	it	by	themself.
Value:	(a	package	version)
Default	Value:	(Empty	string)
Example:

auto_upgrade_from="2.0"

DSM	Requirement:	5.2-5565

Field	Name:	offline_install

Description:	If	set	to	"yes",	after	the	package	is	published	in	synology	server,	it	won't	be	shown	in	the	package	list	of
Package	Center	from	Synology	server.	However,	the	user	can	install	the	package	manually.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

offline_install="yes"

DSM	Requirement:	DSM	6.0

Field	Name:	thirdparty
Description:	If	set	to	“yes”,	your	package	is	a	third-party	package	and	isn't	developed	by	Synology.	In	Package	Center,
third-pary	pacakges	will	be	shown	in	another	part.

Note:	It's	not	used	in	DSM	5.0	or	newer.

Value:	"yes"/"no"
Default	Value:	"no"
Example:

thirdparty="yes"

DSM	Requirement:	4.0~4.3

Field	Name:	os_max_ver

Description:	Maximum	version	of	DSM	that	is	capable	to	run	the	package.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_max_ver="6.1-14715"

Optional	Fields

52

DSM	Requirement:	6.1-14715

Field	Name:	support_move

Description:	If	set	to	"yes",	the	package	can	be	moved	to	a	different	volume	after	installation.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

support_move="yes"

DSM	Requirement:	6.2-22306

Field	Name:	log_collector

Description:

Value:

Default	Value:

Example:	 			

DSM	Requirement:

Field	Name:	support_aaprofile
Description:

Value:

Default	Value:

Example:	 			

DSM	Requirement:

Field	Name:	exclude_model
Description:	List	the	model	names	where	the	package	can't	be	used	to	install	the	package.

Note:	Be	careful	to	use	this	exclude_model	field.	If	the	package	has	different	exclude_model	value	in	the	different
versions,	the	end	user	can	install	the	package	in	the	specific	version	without	some	model	values	of	exclude_model.

Value:	model	values	are	separated	with	a	space.
Default	Value:	(Empty)
Example:

exclude_model="synology_cedarview_713+	synology_kvmx64_virtualdsm"

DSM	Requirement:	7.0-40329

Field	Name:	os_name

Optional	Fields

53

Description:	Valid	os	names	that	can	install	the	package,	if	os_name	is	defined	and	current	os	name	is	not	inside	then
installation	would	be	rejected
Value:	OS	names

Note:	Each	OS	name	is	separated	with	a	colon.

Default	Value:	(Current	OS	name)
Example:

os_name="DSM:SRM:Surveillance"

DSM	Requirement:	7.0-40332

Field	Name:	use_deprecated_replace_mechanism
Description:	if	set	to	"yes",	replacee	will	be	uninstalled	after	replacer	installed,	and	prereplace	/	postreplace	scripts	will	not
be	executed.	Otherwise,	replacee	will	be	uninstalled	before	replacer	installed,	and	prereplace	/	postreplace	will	be	executed.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

install_replace_packages="packageA"

use_deprecated_replace_mechanism="yes"

DSM	Requirement:	7.0-40340

Field	Name:	install_on_cold_storage
Description:	if	set	to	"yes",	this	package	can	be	installed	on	cold	storage,	which	has	very	large	space	for	data	storage.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

install_on_cold_storage="yes"

DSM	Requirement:	7.0-40726

Optional	Fields

54

package.tgz
The	package.tgz	is	a	compressed	file	(tgz	/	xz)	containing	all	the	files	you	would	need	when	bringing	up	your	applications	such
as:

executable	files
library	files
UI	files
configuration	files

You	can	use	pkg_make_package	function	to	create	the	package.tgz	instead	of	packing	it	manually.

Once	the	package	is	installed,	your	package.tgz	will	be	extracted	to	 	/volume?/@appstore/[your_pkg_name]/		or
	/usr/local/packages/@appstore/[your_pkg_name]/		folder	(depending	on	the	install_type	in	INFO).	In	the	meantime,	there	will
be	a	soft	link	at	 	/var/packages/[your_pkg_name]/target		pointing	to	the	assigned	folder.

In	addition	to	the	 	target		directory,	system	will	also	create	other	directories	for	package	to	store	its	data	for	different	purposes.
Detailed	information	can	be	found	HERE.

package.tgz

55

scripts
This	folder	contains	shell	scripts	controlling	the	lifecycle	of	a	package.

Script
Name Required Description

preinst O It	can	be	used	to	check	conditions	before	installation	but	not	to	make	side	effects	onto	the
system.	Package	installation	will	be	aborted	for	non-zero	returned	value.

postinst O It	can	be	used	to	prepare	environment	for	package	after	installed.	Package	status	will
become	corrupted	for	non-zero	returned	value.

preuninst O It	can	be	used	to	check	conditions	before	uninstallation	but	not	to	make	side	effects	onto
the	system.	Package	uninstallation	will	be	aborted	for	non-zero	returned	value.

postuninst O It	can	be	used	to	cleanup	environment	for	package	after	uninstalled.

preupgrade O It	can	be	used	to	check	conditions	before	upgrade	but	not	to	make	side	effects	onto	the
system.	Package	upgrade	will	be	aborted	for	non-zero	returned	value.

postupgrade O It	can	be	used	to	prepare	environment	for	package	after	upgraded.	Package	status	will
become	corrupted	for	non-zero	returned	value.

prereplace X It	can	be	used	to	do	data	migration	when	install_replace_packages	is	defined	in	 	INFO		for
package	replacement.	Package	replacement	will	be	aborted	for	non-zero	returned	value.

postreplace X It	can	be	used	to	do	data	migration	when	install_replace_packages	is	defined	in	 	INFO		for
package	replacement.	Package	replacement	will	be	aborted	for	non-zero	returned	value.

start-stop-
status O It	can	be	used	to	control	package	lifecycle.

The	simplest	implemenation	of	script	is	just	doing	nothing:

#!/bin/sh

exit	0

Please	refer	to	Script	Messages	for	mechanism	to	show	messages	to	users.

start-stop-status

#!/bin/sh

case	"$1"	in

				start)

								;;

				stop)

								;;

				status)

								;;

esac

exit	0

This	script	is	used	to	start,	stop	a	package	and	detect	running	status.	DSM	would	call	this	script	with	different	parameters	in
different	scenario:

scripts

56

start:	When	a	user	runs	the	package	or	the	system	is	turning	on,	the	package	should	do	its	start	operation.

stop:	When	a	user	stops	the	package	or	the	system	is	turning	off,	the	package	should	do	its	stop	operation.

status:	When	the	package	status	is	being	checked,	the	following	exit	codes	should	be	returned	according	to	its	status:

	0:	package	is	running.

	1:	program	of	package	is	dead	and	/var/run	pid	file	exists.

	2:	program	of	package	is	dead	and	/var/lock	lock	file	exists

	3:	package	is	not	running

	4:	package	status	is	unknown

	150:	package	is	broken	and	should	be	reinstalled.

prestart:	If	precheckstartstop	in	 	INFO		is	set	to	 	yes	,	the	package	could	check	if	it	is	allowed	to	be	started.

Note:	It	will	also	run	before	starting	a	package	at	booting	up	after	DSM	7.0.

prestop:	If	precheckstartstop	in	 	INFO		is	set	to	 	yes	,	the	package	could	check	if	it	is	allowed	to	be	stopped.

Note:	It	won't	run	before	stopping	a	package	at	shutting	down.

Execution	Order

Installation

1.	 prereplace
2.	 preinst
3.	 postinst
4.	 postreplace
5.	 start-stop-status	with	prestart	argument	if	end	user	chooses	to	start	it	immediately
6.	 start-stop-status	with	start	argument	if	end	user	chooses	to	start	it	immediately

Upgrade

1.	 start-stop-status	with	prestop	argument	if	it	has	been	started	(old)
2.	 start-stop-status	with	stop	argument	if	it	has	been	started	(old)
3.	 preupgrade	(new)
4.	 preuninst	(old)
5.	 postuninst	(old)
6.	 prereplace	(new)
7.	 preinst	(new)
8.	 postinst	(new)
9.	 postreplace	(new)
10.	 postupgrade	(new)
11.	 start-stop-status	with	prestart	argument	if	it	was	started	before	being	upgraded	(new)
12.	 start-stop-status	with	start	argument	if	it	was	started	before	being	upgraded	(new)

Uninstallation

1.	 start-stop-status	with	prestop	argument	if	it	has	been	started
2.	 start-stop-status	with	stop	argument	if	it	has	been	started
3.	 preuninst
4.	 postuninst

scripts

57

Start

1.	 start-stop-status	with	prestart	argument
2.	 start-stop-status	with	start	argument

Stop

1.	 start-stop-status	with	prestop	argument
2.	 start-stop-status	with	stop	argument

scripts

58

Script	Environment	Variables
Several	variables	are	exported	by	Package	Center	and	can	be	used	in	the	scripts.	Descriptions	of	the	variables	are	given	as	below:

SYNOPKG_PKGNAME:	Package	identify	which	is	defined	in	INFO.
SYNOPKG_PKGVER:	Package	version	which	is	defined	in	INFO.	The	value	will	be	new	version	of	package	when	it	is
upgrading.
SYNOPKG_PKGDEST:	Target	directory	where	the	package	is	stored.
SYNOPKG_PKGDEST_VOL:	Target	volume	where	the	package	is	stored.
SYNOPKG_PKGPORT:	adminport	port	which	is	defined	in	INFO.	This	port	will	be	occupied	by	this	package	with	its
management	interface.
SYNOPKG_PKGINST_TEMP_DIR:	The	temporary	directory	where	the	package	are	extracted	when	installing	or
upgrading	it.
SYNOPKG_TEMP_LOGFILE:	A	temporary	file	path	for	a	script	to	log	information	or	error	messages.
SYNOPKG_TEMP_UPGRADE_FOLDER:	The	temporary	directory	when	the	package	is	upgrading.	You	can	move	the
files	from	the	previous	version	of	the	package	to	it	in	preupgrade	script	and	move	them	back	in	postupgrade.
SYNOPKG_DSM_LANGUAGE:	End	user's	DSM	language.
SYNOPKG_DSM_VERSION_MAJOR:	End	user’s	major	number	of	DSM	version	which	is	formatted	as	[DSM	major
number].[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_MINOR:	End	user’s	minor	number	of	DSM	version	which	is	formatted	as	[DSM	major
number].[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_BUILD:	End	user’s	DSM	build	number	of	DSM	version	which	is	formatted	as	[DSM	major
number].[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_ARCH:	End	user’s	DSM	CPU	architecture.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping
Table	to	more	information
SYNOPKG_PKG_STATUS:	Package	status	presented	by	these	values:	INSTALL,	UPGRADE,	UNINSTALL,	START,
STOP	or	empty.
1.	 INSTALL	will	be	set	as	the	status	value	in	the	preinst	and	postinst	scripts	while	the	package	is	installing.	If	the	user

chooses	to	“start	after	installation”	at	the	last	step	of	the	installation	wizard,	the	value	will	be	set	to	INSTALL	in	the
start-stop-status	script	when	the	package	is	started.

2.	 UPGRADE	will	be	set	as	the	status	value	in	the	preupgrade,	preuninst,	postunist,	preinst,	postinst	and	postupgrade
scripts	sequentially	while	the	package	is	upgrading.	If	the	package	has	already	started	before	upgrade,	the	value	will	be
set	to	UPGRADE	in	the	start-stop-status	script	when	the	package	is	started	or	stopped.

3.	 UNINSTALL	will	be	set	as	the	status	value	in	the	preuninst	and	postunist	scripts	while	the	package	is	un-installing.	If
the	package	has	already	started	before	un-installation,	the	value	will	be	set	to	UNINSTALL	in	the	start-stop-status
script	when	the	package	is	stopped.

4.	 If	the	user	starts	or	stops	a	package	in	the	Package	Center,	START	or	STOP	will	be	set	as	the	status	value	in	the	start-
stop-status	script.

5.	 When	the	NAS	is	booting	up	or	shutting	down,	its	status	value	will	be	empty.
SYNOPKG_OLD_PKGVER:	Old	package	version	which	is	defined	in	INFO	during	upgrading.
SYNOPKG_TEMP_SPKFILE:	The	location	of	package	spk	file	is	temporarily	stored	in	DS	when	the	package	is
installing/upgrading.
SYNOPKG_USERNAME:	The	user	name	who	installs,	upgrades,	uninstalls,	starts	or	stops	the	package.	If	the	value	is
empty,	the	action	is	triggered	by	DSM,	not	by	the	end	user.
SYNOPKG_PKG_PROGRESS_PATH:	A	temporary	file	path	for	a	script	to	showing	the	progress	in	installing	and
upgrading	a	package.

Note:	

1.	 The	progress	value	is	between	0	and	1.
2.	 Example:

Script	Environment	Variables

59

flock	-x	"$SYNOPKG_PKG_PROGRESS_PATH"	-c	echo	0.80	>	"$SYNOPKG_PKG_PROGRESS_PATH"

Once	the	end	user	enters	or	selects	some	values	of	the	UI	components	which	are	configured	in
install_uifile(.sh)/upgrade_uifile(.sh)/uninstall_uifile(.sh)	(Please	refer	to	WIZARD_UIFILES	section	for	more	information),
the	names	and	values	of	the	components	will	be	set	in	the	environment	variables.	Also	note	that	the	names	of	these	components
cannot	be	the	same	as	those	of	the	environment	variables.

Script	Environment	Variables

60

Show	Messages	to	Users
If	you	want	to	prompt	users	with	messages	before	they	install,	upgrade,	or	uninstall	a	package,	you	can	apply
WIZARD_UIFILES	to	do	so.

If	you	want	to	send	a	prompt	users	with	messages	after	they	installed,	upgraded,	uninstalled,	started,	or	stopped	a	package,
you	can	use	the	 	$SYNOPKG_TEMP_LOGFILE		variable	in	related	scripts.	For	example:

echo	"Hello	World!!"	>	$SYNOPKG_TEMP_LOGFILE

If	you	want	to	prompt	users	according	to	their	language,	you	can	use	 	$SYNOPKG_DSM_LANGUAGE		variable	for	language	abbreviation
as	shown	in	the	example	below:

case	$SYNOPKG_DSM_LANGUAGE	in

								chs)

												echo	"简体中文"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								cht)

												echo	"繁體中文"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								csy)

												echo	"Český"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								dan)

												echo	"Dansk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								enu)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								fre)

												echo	"Français"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ger)

												echo	"Deutsch"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								hun)

												echo	"Magyar"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ita)

												echo	"Italiano"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								jpn)

												echo	"日本語"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								krn)

												echo	""	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nld)

												echo	"Nederlands"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nor)

												echo	"Norsk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								plk)

												echo	"Polski"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptb)

												echo	"Português	do	Brasil"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptg)

												echo	"Português	Europeu"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

Script	Messages

61

								rus)

												echo	"Русский"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								spn)

												echo	"Español"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								sve)

												echo	"Svenska"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								trk)

												echo	"Türkçe"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								*)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

				esac

Please	refer	to	"scripts"	and	"Script	Environment	Variables"	sections	for	more	information.

In	addition,	you	can	use	 	/usr/syno/bin/synodsmnotify		executable	to	send	desktop	notifications	to	users.	For	example,	the
strings	 	[title]		and	 	[messages]		will	be	sent	to	the	 	administrators		user	group	once	the	following	command	get	called.

/usr/syno/bin/synodsmnotify	@administrators	[title]	[messages]

Script	Messages

62

conf
The	conf	folder	contains	the	following	files:

File/Folder
Name Required Description File/Folder

Type
DSM

Requirement

PKG_DEPS X Define	dependency	between	packages	with
restrictions	of	DSM	version. File 4.2-3160

PKG_CONX X Define	conflicts	between	packages	with	restrictions
of	DSM	version. File 4.2-3160

privilege O Define	file	privilege	and	execution	privilege	to
secure	the	package. File 6.2-5891

resource X Define	system	resources	that	can	be	used	in	the
lifecycle	of	package. File 6.2-5941

Since	DSM	7.0,	all	packages	are	forced	to	lower	the	privilege	explicitly.	The	 	privilege		must	be	provided	for	package	to
work.

conf

63

Privilege
DSM	7.0,	packages	are	forced	to	lower	the	privilege	by	applying	privilege	mechanism	explicitly.

To	reduce	security	risks,	package	should	run	as	an	user	rather	than	 	root	.	Package	can	apply	such	mechanism	by	providing	a
configuration	file	named	 	pivilege	:

With	the	configuration,	package	developer	is	capable	to

Control	default	user	/	group	name	of	process	in	 	scripts	

Control	permission	of	files	in	 	package.tgz	

Control	file	capabilities	in	 	package.tgz	

Control	if	special	system	resources	are	accessible

Control	group	relationship	between	packages

To	overcome	the	limitation	that	normal	user	cannot	be	used	to	do	privileged	operations,	we	provide	a	way	for	package	to	request
system	resources.	Please	refer	to	Resource	for	more	information.

Setup	privilege	configuration

Just	create	a	file	at	 	conf/privilege		with	prefered	configuration.

{

				"defaults":	{

								"run-as":	"package"

				}

}

privilege

64

Resource
Packages	can	obtain	system	resources	even	in	lower	privilege	identity	if	they	apply	this	mechanism.

Steps	to	setup	resource	config

1.	 Find	out	the	resources	you	want	from	Resource	List

2.	 Check	if	the	corresponding	Timing	of	selected	resource	is	satisfied.

3.	 Create	a	file	at	 	conf/resource		with	prefered	configuration.

{

				"data-share":	{

								"shares":	[

												{

																"name":	"MyShareFolderName",

																"permission":	{

																				"ro":	["MyUserName"]

																}

												}

]

				}

}

The	instance	handling	the	resource	request	is	called	 	worker	.

resource

65

PKG_DEPS

The	PKG_DEPS	is	similar	to	install_dep_packages	key	in	INFO	file,	but	it	additionally	defines	the	restriction	according	to
specific	DSM	versions.

priority	of	 	PKG_DEPS		is	higher	than	 	install_dep_packages		in	 	INFO	

Each	configuration	file	is	defined	in	standard	.ini	file	format	with	key/value	pairs	and	sections.	A	section	describes	a	unique	name
of	dependent/conflicting	package.	Each	section	contains	information	about	the	requirements	of	package	versions	and	the
restriction	of	DSM	versions.

Key Description Value

pkg_min_ver Minimum	version	of	dependent
package. Package	version

pkg_max_ver Maximum	version	of	dependent
package. Package	version

dsm_min_ver Minimum	required	DSM	version.
X.Y-Z	

DSM	major	number,	DSM	minor	number,	DSM	build
number

dsm_max_ver Maximum	required	DSM	version.
X.Y-Z	

DSM	major	number,	DSM	minor	number,	DSM	build
number

;	Your	package	depends	on	Package	A	in	any	version

[Package	A]

;	Your	package	depends	on	Package	B	version	2	or	newer

[Package	B]

pkg_min_ver=2

;	Your	package	depends	on	Package	C	with	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	depends	on	Package	D	with	version	2	or	newer	but	it	will	be	ignored	when	DSM	version	is	smaller	

than	4.1-2668

[Package	D]

dsm_min_ver=4.1-2668

pkg_min_ver=2

;	Your	package	depends	on	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	DSM	version	is	bigger	t

han	4.1-2668

[Package	E]

dsm_max_ver=4.1-2668

pkg_min_ver=2

PKG_DEPS

66

PKG_CONX

The	PKG_CONX	is	similar	to	install_conflict_packages	key	in	INFO	file,	but	it	additionally	defines	the	restriction	according	to
specific	DSM	versions.

priority	of	 	PKG_CONX		is	higher	than	 	install_conflict_packages		in	 	INFO	

Each	configuration	file	is	defined	in	standard	.ini	file	format	with	key/value	pairs	and	sections.	A	section	describes	a	unique	name
of	dependent/conflicting	package.	Each	section	contains	information	about	the	requirements	of	package	versions	and	the
restriction	of	DSM	versions.

Key Description Value

pkg_min_ver Minimum	version	of	conflicting
package. Package	Version

pkg_max_ver Maximum	version	of	conflicting
package. Package	Version

dsm_min_ver Minimum	requried	DSM	version.
X.Y-Z	

DSM	major	number,	DSM	minor	number,	DSM	build
number

dsm_max_ver Maximum	requried	DSM	version.
X.Y-Z	

DSM	major	number,	DSM	minor	number,	DSM	build
number

;	Your	package	conflicts	with	Package	A	in	any	version

[Package	A]

;	Your	package	conflicts	with	Package	B	version	2	or	newer

[Package	B]

pkg_min_ver=2

;	Your	package	conflicts	with	Package	C	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	conflicts	with	Package	D	version	2	or	newer,	but	it	will	be	ignored	when	DSM	version	is	smaller	

than	4.1-2668

[Package	D]

dsm_min_ver=4.1-2668

pkg_min_ver=2

;	Your	package	conflict	on	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	DSM	version	is	bigger	

than	4.1-2668

[Package	E]

dsm_max_ver=4.1-2668

pkg_min_ver=2

PKG_CONX

67

WIZARD_UIFILES
install_uifile,	upgrade_uifile,	and	uninstall_uifile	are	files	which	describe	UI	components	in	JSON	format.	They	are	stored	in
the	“WIZARD_UIFILES”	folder.	During	the	installation,	upgrading,	and	un-installation	processes,	these	UI	components	will
appear	in	the	wizard.	Once	these	components	are	selected,	their	keys	will	be	set	in	the	script	environment	variables	with	true,
false,	or	text	values.

These	files	can	be	regarded	as	user	settings	or	used	to	control	the	flow	of	script	execution.

install_uifile:	Describes	UI	components	for	the	installation	process.	During	the	process	of	the	preinst	and	postinst	scripts,
these	component	keys	and	values	can	be	found	in	the	environment	variables.
upgrade_uifile:	Describes	UI	components	for	the	upgrade	process.	During	the	process	of	the	preupgrade,	postupgrade,
preuninst,	postuninst,	preinst	and	postinst	scripts,	these	component	keys	and	values	can	be	found	in	the	environment
variables.
uninstall_uifile:	Describes	UI	components	for	the	un-installation	process.	During	the	process	of	the	preuninst	and
postuninst	scripts,	these	component	keys	and	values	can	be	found	in	the	environment	variables.

If	you	would	like	to	run	a	script	to	generate	the	wizard	dynamically,	you	can	add	install_uifile.sh,	upgrade_uifile.sh	and
uninstall_uifile.sh	files,	they	are	run	before	installing,	upgrading,	and	uninstalling	a	package	respectively	to	generate	UI
components	in	JSON	format	and	write	to	SYNOPKG_TEMP_LOGFILE.	Script	environment	variables	in	these	scripts	can	be
gotten	in	these	scripts.	Please	refer	to	"Script	Environment	Variables"	for	more	information.

If	you	would	like	to	localize	the	descriptions	of	UI	components,	you	can	add	a	language	abbreviation	suffix	to	the	file
“install_uifile_[DSM	language],”	“upgrade_uifile_[DSM	language]”,	“uninstall_uifile_[DSM	language]”,
“install_uifile_[DSM	language].sh,”	“upgrade_uifile_[DSM	language].sh”	or	“uninstall_uifile_[DSM	language].sh”	in	this
folder.	For	example,	in	order	to	perform	installation	in	Traditional	Chinese,	[DSM	language]	should	be	replaced	with	“cht”	as
follows:	“install_uifile_cht”.

Example	of	the	file	in	JSON	format:

[{

				"step_title":	"Step1",

				"items":	[{

								"type":	"singleselect",

								"desc":	"a	radio	group",

								"subitems":	[{

												"key":	"radio1",

												"desc":	"Radio	button	1",

												"defaultValue":	false

								},	{

												"key":	"radio2",

												"desc":	"Radio	button	2",

												"defaultValue":	true

								}]

				}]

},	{

				"step_title":	"Step2",

				"items":	[{

								"type":	"multiselect",

								"desc":	"a	check	group",

								"subitems":	[{

												"key":	"check1",

												"desc":	"Check	button	1"

								},	{

												"key":	"check2",

												"desc":	"Check	button	2",

												"defaultValue":	true,

												"validator":	{

																"fn":	"{var	v=arguments[0];	if	(!v)	return	'Check	this';return	true;}"

WIZARD_UIFILES

68

													}

								}]

				},	{

								"type":	"textfield",

								"desc":	"textfield",

								"subitems":	[{

												"key":	"textfield1",

												"desc":	"textfield	1",

												"defaultValue":	"default",

												"validator":	{

																"allowBlank":	false,

																"minLength":	2,

																"maxLength":	10

												}

								},{

												"key":	"textfield2",

												"desc":	"textfield	2",

												"emptyText":	"abc1@cde.com",

												"validator":	{

																"vtype":	"email",

																"regex":	{

																				"expr":	"/[0-9]/i",

																				"errorText":	"Error"

																}

												}

								}]

				}]

},	{

				"step_title"	:	"Step	3",

				"invalid_next_disabled":	true,

				"activeate":	"{console.log('activeate',	arguments);}",

				"deactivate":	"{console.log('deactivate',	arguments);}",

				"items"	:	[{

								"type"	:	"singleselect",

								"desc"	:	"Check	it",

								"subitems":	[{

																"key":	"id1",

																"desc":	"Not	choose	it",

																"defaultValue":	true

												},

												{

																"key":	"id2",

																"desc":	"Choose	it",

																"defaultValue":	false,

																"validator":	{

																				"fn":	"{return	arguments[0];}"

																}

												}]

								}]

}]

Example	of	using	a	script	to	generate	a	file	in	JSON	format:

#!/bin/sh

/bin/cat	>	/tmp/wizard.php	<<'EOF'

<?php

$ini_array	=	parse_ini_file("/etc.defaults/synoinfo.conf");

$unique=$ini_array["unique"];

echo		<<<EOF

[{

				"step_title":	"Step	1",

				"items":	[{

								"type":	"textfield",

								"desc":	"model	name",

								"subitems":	[{

												"key":	"pkgwizard_db_name",

WIZARD_UIFILES

69

												"desc":	"name",

												"defaultValue":"$unique"

								}]

				},	{

								"type":	"combobox",

								"desc":	"Please	select	a	volume",

								"subitems":	[{

												"key":	"volume",

												"desc":	"volume	name",

												"displayField":	"display_name",

												"valueField":	"volume_path",

												"editable":	false,

												"mode":	"remote",

												"api_store":	{

																"api":	"SYNO.Core.Storage.Volume",

																"method":	"list",

																"version":	1,

																"baseParams":	{

																				"limit":	-1,

																				"offset":	0,

																				"location":	"internal"

																},

																"root":	"volumes",

																"idProperty":	"volume_path",

																"fields":	["display_name",	"volume_path"]

												},

												"validator":	{

																"fn":	"{console.log(arguments);return	true;}"

												}

								}]

				}]

}];

EOF;

?>

EOF

/usr/bin/php	-n	/tmp/wizard.php	>	$SYNOPKG_TEMP_LOGFILE

rm	/tmp/wizard.php

exit	0

Here	are	the	properties	for	each	step	in	the	wizard	in	JSON	format:

Property Description DSM
Requirement

step_title Optional.	Describes	the	title	of	the	current	step	performed	in	the	wizard. 3.2-1922

items Describes	an	array	containing	the	components	of	“singleselect”,
“multiselect”,	“textfield”,	“password”,	or	“combobox”	type. 3.2-1922

type

Must	be	“singleselect”,	“multiselect”,	“textfield”	“password”	or
“combobox”.	
“singleselect”	type	represents	the	components	in	the	sub-items	which	are
all	radio	buttons.	You	can	select	only	one	radio	box	with	a	unique	key.	
“multiselect”	type	represents	the	components	in	the	sub-items	which	are
all	checkboxes.	You	can	check	more	than	one	checkbox.	
“textfield”	type	represents	the	components	in	the	sub-items	which	are	all
text	fields.	You	can	type	text.	
“password”	type	represents	the	components	in	the	sub-items	which	are
all	password	fields.	You	can	type	passwords.
“combobox”	type	represents	the	components	in	the	sub-items	which	are
all	combobox	fields.	The	user	can	choose	a	item	in	the	combobox	field.
Note:	“combobox”	type	is	only	available	in	DSM	5.2	or	newer.

3.2-1922

desc Optional.	Describe	a	component	in	the	label	text. 3.2-1922

subitems Describe	an	array	containing	radio	buttons,	checkboxes,	text	fields,	or
password	components. 3.2-1922

WIZARD_UIFILES

70

activeate
JSON-style	string	to	describe	a	function	which	is	run	after	the	step	of	the
wizard	has	been	visually	activated.	(deprecated	after	6.1-15027,	use

activate_v2	instead)
5.2

activate_v2 It	replaced	activeate 6.1-15027

deactivate
JSON-style	string	to	describe	a	function	which	is	run	after	the	step	of	the
wizard	has	been	visually	deactivated.	(deprecated	after	6.1-15027,	use
deactivate_v2	instead)

5.2

deactivate_v2 It	replaced	deactivate 6.1-15027

invalid_next_disabled

If	set	to	true,	the	next	button	in	the	step	of	the	wizard	will	be	disabled	by
default.	It	will	be	enabled	if	all	items	are	validated	scucuessfully	by
validator	in	this	step.	(deprecated	after	6.1-15027,	use
invalid_next_disabled_v2	instead)

5.2

invalid_next_disabled_v2 It	replaced	invalid_next_disabled 6.1-15027

Here	are	the	properties	for	components	in	subitems	in	JSON	format:

Property Description DSM
Requirement

key

A	unique	component	key	value	represents	a	UI	component.	If	you	select	a	component,
this	key	will	be	set	in	the	script	environment	variables	of	preinst,	postinst,
preupgrade,	postupgrade,	preuninst,	postuninst,	start-stop-status	(the	string	value
of	the	selected	checkbox	or	radio	button	is	always	“true”.).

3.2-1922

defaultValue Optional.	true/false	value	to	initialize	“singleselect”	or	“multiselect”	component,	or	a
string	value	to	initialize	“textfield”	or	“password”	component. 4.2-3160

emptyText Optional.	The	prompt	text	to	place	into	an	empty	“textfield”	or	“password”
component	to	prompt	the	user	how	to	fill	in	if	defaultValue	is	not	set. 4.2-3160

validator
JSON-style	object	to	describe	validation	functions.	If	the	validation	fails	with	the
user's	value,	the	user	cannot	go	to	the	next	step	of	the	wizard.	More	detailed	properties
of	validator	are	given	in	the	validator	table.

4.2-3160

disabled true	to	disable	the	field	(defaults	to	false). 6.0

height The	height	of	this	component	in	pixels. 6.0

hidden true	to	hide	this	component. 6.0

invalidText The	error	text	to	use	when	marking	a	field	invalid	and	no	message	is	provided. 6.0

preventMark true	to	disable	marking	the	field	invalid.	Defaults	to	false. 6.0

width The	width	of	this	component	in	pixels. 6.0

Here	are	the	properties	of	validator:

Property Description Value

allowBlank Specify	false	to	validate	that	the	value's	length	of	“textfield”	or	“password”	component
is	>	0 true/false

minLength Minimum	length	of	“textfield”	or	“password”	component Number

maxLength Maximum	length	of	“textfield”	or	“password”	component Number

vtype

Specify	pre-defined	validation	function,
"alpha":	validate	alpha	value
"alphanum":	validate	alphanumeric	value
"email":	validate	email	address
"url":	validate	URL

"alpha",
"alphanum",
"email",
"url"

Describe	validation	function	in	regular	expression	and	invalid	message.	Properties

WIZARD_UIFILES

71

regex
Describe	validation	function	in	regular	expression	and	invalid	message.	Properties
contain:
"expr":	Javascript	Regular	Expression
"errorText":	invalid	string

JSON-style
object

fn

Describe	the	Javascript	function	which	is	encoded	by	JSON-style	string	with	curly
brackets.	In	this	function,	you	can	use	arguments[0]	to	get	the	value	of	the	component.	In
addition,	this	function	will	return	true	if	the	value	is	valid	or	as	an	invalid	string	if	the
value	is	invalid.

String

Here	are	the	other	properties	for	textfield,	password	or	combobox	component	in	subitems	in	JSON	format:

Property Description DSM
Requirement

blankText The	error	text	to	display	if	the	allowBlank	validation	fails 6.0

grow true	if	this	field	should	automatically	grow	and	shrink	to	its	content 6.0

growMax The	maximum	height	to	allow	when	grow	is	true 6.0

growMin The	minimum	height	to	allow	when	grow	is	true 6.0

htmlEncode false	to	skip	HTML-encoding	the	text	when	rendering	it	(defaults	to	false). 6.0

maxLengthText Error	text	to	display	if	the	maximum	length	validation	using	maxLength
fails. 6.0

minLengthText Error	text	to	display	if	the	minimum	length	validation	using	minLength
fails. 6.0

Here	are	the	properties	for	combobox	component	in	subitems	in	JSON	format:

Property Description DSM
Requirement

api_store

JSON-style	object	to	describe	to	send	a	WebAPI	request	and	store	the	response	in
the	data	strusture	for	combobox	use.	More	detailed	properties	of	api_store	are
given	in	the	store	table.
Example:
	{	

			 	"api":	"SYNO.Core.XXX",		
			 	"method":	"list",	
			 	"version":	1,		
				 	"baseParams":	{		
						 	"offset":	0,	
						 	"limit":-1,	
			 	},	
			 	"root":	"items",	
			 	"idProperty":"name",	
			 	"fields":	["name"]	
	}	

6.0

autoSelect
true	to	select	the	first	result	gathered	by	the	data	store	(defaults	to	true).	A	false
value	would	require	a	manual	selection	from	the	dropdown	list	to	set	the
components	value.

6.0

displayField The	underlying	data	field	name	to	bind	to	this	combobox. 6.0

editable false	to	prevent	the	user	from	typing	text	directly	into	the	field,	the	field	will	only
respond	to	a	click	on	the	trigger	to	set	the	value.	(defaults	to	true). 6.0

forceSelection true	to	restrict	the	selected	value	to	one	of	the	values	in	the	list,	false	to	allow	the
user	to	set	arbitrary	text	into	the	field	(defaults	to	false). 6.0

handleHeight The	height	in	pixels	of	the	dropdown	list	resize	handle	if	resizable	is	true. 6.0

listAlign A	valid	anchor	position	value. 6.0

listEmptyText The	empty	text	to	display	in	the	data	view	if	no	items	are	found. 6.0

WIZARD_UIFILES

72

listEmptyText The	empty	text	to	display	in	the	data	view	if	no	items	are	found. 6.0

listWidth The	width	of	the	dropdown	list. 6.0

maxHeight The	maximum	height	in	pixels	of	the	dropdown	list	before	scrollbars	are	shown. 6.0

minChars The	minimum	number	of	characters	the	user	must	type	before	autocomplete	and
typeAhead	activate 6.0

minHeight The	minimum	height	in	pixels	of	the	dropdown	list	when	the	list	is	constrained	by
its	distance	to	the	viewport	edges. 6.0

minListWidth The	minimum	width	of	the	dropdown	list	in	pixels. 6.0

mode

Set	to	'loacl'	to	load	local	store	to	load	local	JSON-array	data.	More	detailed
properties	of	local	store	are	given	in	the	store	table.	
Example:	
	{	

			 	"mode":	"local",	
			 	"valueField":	"myId",	
			 	"displayField":	"displayText",	
			 	"store":	{	
						 	"xtype":	"arraystore",	
						 	"fields":	["myId",	"displayText"],	
						 	"data":	[[1,	"item1"],	[2,	"item2"]]	
			 	}	
	}	

6.0

pageSize
If	greater	than	0,	a	paging	toolbar	is	displayed	in	the	footer	of	the	dropdown	list
and	the	filter	queries	will	execute	with	page	start	and	limit	parameters.	Only
applies	when	using	api_store	(defaults	to	0).

6.0

queryDelay The	length	of	time	in	milliseconds	to	delay	between	the	start	of	typing	and
sending	the	query	to	filter	the	dropdown	list. 6.0

resizable true	to	add	a	resize	handle	to	the	bottom	of	the	dropdown	list	(Defaults	to	false). 6.0

selectOnFocus true	to	select	any	existing	text	in	the	field	immediately	on	focus.	Only	applies
when	editable	is	true	(defaults	to	false). 6.0

store

A	data	structure	to	store	data	in	combobox	(defaults	to	undefined).	It	can't	be	used
with	api_store	at	the	same	time.	Acceptable	values	for	this	property	are:
1-dimensional	array	:	e.g.,	 	["Foo","Bar"]	
2-dimensional	array	:	For	a	2-dimensional	array,	the	value	in	index	0	of	each	item
will	be	assumed	to	be	the	valueField,	while	the	value	at	index	1	is	assumed	to	be
the	displayField,	e.g.,	 	[["f","Foo"],["b","Bar"]]	.

6.0

title If	supplied,	a	header	element	is	created	containing	this	text	and	added	into	the	top
of	the	dropdown	list 6.0

typeAhead true	to	populate	and	autoselect	the	remainder	of	the	text	being	typed	after	a
configurable	delay	(typeAheadDelay). 6.0

typeAheadDelay The	length	of	time	in	milliseconds	to	wait	until	the	typeahead	text	is	displayed. 6.0

valueField The	underlying	data	value	name	to	bind	to	this	combobox. 6.0

Here	are	the	properties	for	api_store	or	store	data	structure	in	JSON	format:

Property Description DSM
Requirement

baseParams An	object	containing	properties	which	are	to	be	sent	as	parameters	for	every	WebAPI
request	in	api_store. 6.0

data An	inline	data	object	readable	by	the	reader	in	local	store	to	load	local	JSON-array
data. 6.0

displayField The	underlying	data	field	name	to	bind	to	this	combobox. 6.0

fields defined	fields	for	the	data	stored	in	this	store	or	api_store. 6.0

WIZARD_UIFILES

73

fields defined	fields	for	the	data	stored	in	this	store	or	api_store. 6.0

idProperty Identity	of	the	property	within	data	that	contains	a	unique	value. 6.0

root The	name	of	the	property	which	contains	the	array	of	data.	Defaults	to	undefined. 6.0

valueField The	underlying	data	value	name	to	bind	to	this	combobox. 6.0

xtype Only	support	arraystore	type	for	local	store	to	load	local	JSON-array	data. 6.0

Note:

1.	 All	words	are	case	sensitive.
2.	 In	DSM	4.0	or	above,	if	both	the	type	and	subitems	properties	are	empty,	text	in	the	desc	property	will	be	displayed	as

one	of	the	steps	of	wizard.
3.	 install_uifile.sh,	upgrade_uifile.sh	,uninstall_uifile.sh	and	*.sh	scripts	to	gernate	the	wizard	dynamically	are	only

supported	in	DSM	5.2	or	newer.

WIZARD_UIFILES

74

License
The	LICENSE	file	contains	the	licenses	/	user	terms	&	conditions	/	end	user	aggrements	to	show	on	the	package	installation
wizard.	The	package	center	would	open	up	a	dialog	to	show	the	content	of	LICENSE	file	and	provide	a	checkbox	for	user	to	agree
these	terms	on	the	dialog.

How	to	place	LICENSE	file
Prepare	a	file	containing	your	terms	&	conditions	in	plain	text	format	then	put	it	to	 	/		of	your	package	(the	directory	where	the
INFO	is)

If	the	LICENSE	file	is	properly	put	inside	spk,	the	installation	wizard	would	show	your	license	file	content	like	this:

LICENSE

75

Synology	DSM	Integration

Synology	DSM	Integration

76

Package	Filesystem	Hierarchy	Standard
After	the	package	installed,	there	will	be	some	directories	for	package	to	put	their	data.	There	will	be	different	directories	linked
for	packages	who	installed	on	volume	partition	/	system	partition.

/var/packages/[package_name]

├──	etc					->	/usr/syno/etc/packages/[package_name]

├──	var					->	/volume[volume_number]/@appdata/[package_name]

├──	tmp					->	/volume[volume_number]/@apptemp/[package_name]

├──	home				->	/volume[volume_number]/@apphome/[package_name]

└──	target		->	/volume[volume_number]/@appstore/[package_name]

/var/packages/[package_name]

├──	etc					->	/usr/syno/etc/packages/[package_name]

├──	var					->	/usr/local/packages/@appdata/[package_name]

├──	tmp					->	/usr/local/packages/@apptemp/[package_name]

├──	home				->	/usr/local/packages/@apphome/[package_name]

└──	target		->	/usr/local/packages/@appstore/[package_name]

Please	refer	to	install_type	in	 	INFO		for	more	information	about	installation	on	volume	/	system	partition.

Directory Purpose Mode Creation
Timing Remove	Timing Script	Variable

etc permanant	config	storage 0755 installed	/
upgraded none none

var	
(since	7.0-
40314)

permanant	data	storage 0755 installed	/
upgraded none 	SYNOPKG_PKGVAR	

tmp	
(since	7.0-
40356)

temporary	data	storage 0755 installed	/
upgraded

uninstalled	/
upgrading

	SYNOPKG_PKGTMP	

home	
(since	7.0-
40759)

private	storage 0700 installed	/
upgraded none 	SYNOPKG_PKGHOME	

target data	extracted	from
	package.tgz	

0755 installed	/
upgraded

uninstalled	/
upgrading

	SYNOPKG_PKGDEST	

Directory	Owner	Rules

When	defaults	run-as	is	package,	FHS	directories	are	set	to	 	[packageuser]:[packagegroup]	

When	defaults	run-as	is	root,	FHS	directories	are	set	to	 	root:[packagegroup]	

Please	refer	to	Privilege	section	for	more	information	about	defaults	run-as.

FHS

77

Desktop	Application
You	can	provide	a	App	Config	for	your	package	so	that	the	configured	application	will	show	on	the	menu	of	desktop.	It	is
possible	to	customize	icon,	application	privilege	and	target	url.

To	distinguish	different	role	of	users,	one	package	can	even	provide	more	than	one	application	such	as	admin	application	for
administrators	and	normal	application	for	normal	users.

In	addition,	any	application	can	bring	its	own	help	documents	into	desktop	by	providing	a	Help	Config.

Desktop	Application

78

Steps	to	setup	desktop	application

1.	 Create	a	directory	inside	package.tgz,	this	directory	will	be	used	to	store	desktop	application	configs.	We	name	it	as	 	ui		for
example	here.

2.	 Add	 	dsmuidir		key	to	your	INFO	or	INFO.sh	whose	value	is	the	relative	path	to	the	directory	you	just	created	on	previous
step.

	dsmuidir="ui"

	dsmuidir="MyApp1:appui1	MyApp2:appui2"

If	you	have	multiple	applications,	the	second	form	should	be	applied.	In	the	example	above,	 	MyApp1		represents	an
identifier	and	 	appui1		represents	a	relative	path.

Once	the	package	is	installed,	DSM	will	create	corresponding	soft	link	at
	/usr/syno/synoman/webman/3rdpaty/[identifier]/		linking	to	the	path	where	your	relative	path	is.	When	the
identifier	is	not	presented	in	the	first	form,	DSM	will	use	package	name	as	identifier	by	default.

3.	 Create	your	own	App	Config	and	Help	Config	under	the	directory	specified	by	 	dsmuidir		if	necessary.

4.	 Add	 	dsmappname		key	to	your	INFO	or	INFO.sh	whose	value	is	the	unique	application	name	inside	App	Config.	This
application	will	be	the	target	application	when	open	button	of	package	is	clicked	in	package	center.

dsmappname="com.company.App1"

Desktop	Application

79

Application	Config
To	integrate	desktop	applications	into	DSM,	you	have	to	provide	a	 	config		file	in	JSON	format	under	the	directory	specified	by
	dsmuidir		in	 	INFO	.

{

				".url":	{

								"com.company.App1":	{

												"type":	"url",

												"icon":	"images/app_{0}.png",

												"title":	"Test	App1",

												"desc":	"Description",

												"url":	"http://www.yahoo.com",

												"allUsers":	true,

								},

								"com.company.App2":	{

												"type":	"legacy",

												"icon":	"images/app2_{0}.png",

												"title":	"Test	App2",

												"desc":	"Description	2",

												"url":	"http://www.synology.com",

												"allUsers":	true,

								}

				}

}

Property Required Description

com.company.App1
com.company.App2 O In	“.url”,	each	object	should	have	a	unique	property	name.

type O

When	you	click	the	menu	item,	the	address	you	use	to	connect	to	the	DSM
management	UI	will	be	shown	in	the	right	frame	of	the	management	UI.	However,
you	can	customize	the	address	as	you	wish.	
The	“type”	value	can	be	"url"	or	"legacy".	"url"	means	when	you	click	the
application	icon,	the	URL	will	be	opened	in	a	pop-up	window,	while	"legacy"
implies	that	the	URL	will	be	opened	in	an	iframe	window	application.	
You	can	follow	the	descriptions	below	to	set	up	your	customized	URL.	

icon O

“icon”	indicates	the	icon	for	the	application.	It	is	a	template	string.	The	“{0}”	can
be	replaced	by	“16”,	“24”,	“32”,	“48”,	“64”,	“72”,	“256”	depending	on	the
resolution	of	the	icon.	
The	icon	must	be	saved	under	/usr/syno/synoman/webman/3rdparty/xxx/	where
xxx	is	the	directory	name	of	your	package.	
For	example,	if	you	create	a	directory	named	"images"	and	put	the	icon	image	file
“icon.png”	in	it,	the	full	path	for	the	icon	would	be:	
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_16.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_24.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_32.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_48.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_64.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_72.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_256.png		
The	icon	value	should	also	be	set	as	"images/icon_{0}.png"

title O “title”	represents	the	application	name	that	will	be	displayed	in	the	main	menu.

desc X “desc”	displays	more	details	about	this	application	upon	mouse-over.

url O
The	following	is	an	example	of	value	setting	for	your	URL	of	the	application:	
“url”:	http://www.synology.com/	
“url”:	“3rdparty/xxx/index.html”

This	key	determines	whether	or	not	the	menu	items	can	be	seen	by	users	when	they
log	in	with	an	admin	account.	If	you	would	like	to	have	all	users	see	the	menu

Application	Config

80

http://www.synology.com/

allUsers X

log	in	with	an	admin	account.	If	you	would	like	to	have	all	users	see	the	menu

items,	please	set	the	key	value	as	below:	
	"allUsers":	true		
The	default	setting	is	that	only	the	admin	can	find	the	application.

Text	fields	support	i18n	value.

Application	Config

81

Application	Help
To	integrate	help	documents	into	DSM	Help,	please	follow	these	steps:

1>	Provide	a	 	helptoc.conf		describing	your	help	document	structure	and	put	it	under	the	directory	specified	by	 	dsmuidir		in
	INFO	.

{

				"app":	"SYNO.App.TestAppInstance",

				"title":	"app_tree:index_title",

				"content":	"testapp_index.html",

				"toc":	[

								{

												"title":	"app_tree:node_1",

												"content":	"testapp_node1.html",

												"nodes":	[

																{

																				"title":	"app_tree:node_1_child",

																				"content":	"testapp_node1_child.html"

																}

]

								},	{

												"title":	"app_tree:node_2",

												"content":	"testapp_node2.html"

								}

]

}

Details	of	 	helptoc.conf		are	stated	below:

Property Description

app the	application	instance.

title the	text	being	displayed.

content the	path	to	your	help	document.

toc the	child	nodes	of	root.	
(use	empty	array	if	your	application	doesn't	have	one)

nodes the	child	nodes	of	toc	node.

Text	fields	support	i18n	value.

2>	Create	directories	and	files	according	to	your	 	helptoc.conf	.

ui	(specified	by	dsmuidir	in	INFO)

├──	helptoc.conf

├──	help

│			├──	enu

│			│				└──	testapp_index.html

│			└──	cht

│								└──	testapp_index.html

└──	texts

				├──	enu

				│				└──	strings

				└──	cht

									└──	strings

3>	Write	each	help	document	in	the	following	 	HTML		format	so	that	the	UI	style	can	be	consistent	with	others.

Application	Help

82

<!DOCTYPE	html>

<html	class="img-no-display">

				<head>

								<meta	charset="UTF-8"	/>

								<meta	http-equiv="X-UA-Compatible"	content="IE=edge,chrome=1">

								<link	href="../../../../help/help.css"	rel="stylesheet"	type="text/css">

								<link	href="../../../../help/scrollbar/flexcroll.css"	rel="stylesheet"	type="text/css">

								<script	type="text/javascript"	src="../../../../help/scrollbar/flexcroll.js"></script>

								<script	type="text/javascript"	src="../../../../help/scrollbar/initFlexcroll.js"></script>

				</head>

				<body>

								This	is	my	help	document	content

				</body>

</html>

Application	Help

83

Application	Internationalization
The	desktop	application	can	have	i18n	text	referenced	by	config,	help,	etc.

ui	(specified	by	dsmuidir	in	INFO)

└──	texts

			├──	enu

			│				└──	strings

			└──	cht

								└──	strings

You	have	to	create	directories	according	to	supported	languages	then	create	a	file	named	 	strings		inside	each	language
directory.

ui/texts/enu/strings

		[app_tree]

		index_title="This	is	a	title"

		node_1="This	is	node1"

		[app_tab]

		tab1="This	is	tab1"

		tab2="This	is	tab2"

ui/texts/cht/strings

		[app_tree]

		index_title="這是標題"

		node_1="這是節點1"

		[app_tab]

		tab1="這是標籤1"

		tab2="這是標籤2"

When	you	want	to	use	these	texts,	just	reference	them	in	 	section:key		format	(one	value	can	only	be	one	i18n	string)

"title":	"app_tree:node_1"

I18N	strings	are	loaded	when	application	opened	on	desktop.

Application	I18N

84

Application	Authentication
After	integrating	your	application	into	Synology	DSM,	you	may	want	to	perform	an	authentication	check	to	ensure	only	logged-in
users	can	access	the	page.

You	can	run	/usr/syno/synoman/webman/modules/authenticate.cgi	to	check	the	user	login	status.	However	the	authenticate.cgi
must	be	run	with	some	environment	variables	(HTTP_COOKIE,	REMOTE_ADDR,	SERVER_ADDR,	etc.).	So	execute	the
authenticate.cgi	directly	from	the	package	custom	CGI	is	recommended	since	the	environment	variables	needed	are	set
automatically.

Sample	Code	test.cgi

The	authenticate.cgi	will	output	the	user	name	if	the	user	has	logged	in.	There	will	be	no	output	if	the	user	has	not	been
authenticated.

Here	is	the	sample	code	for	3rd	party	CGI	(Note.	compile	this	with	-std=c99)

#define	_GNU_SOURCE

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<strings.h>

/**

	*	Check	whether	user	is	logged	in.

	*

	*	If	user	has	logged	in,	put	the	username	into	"user".

	*

	*	@param	user				The	buffer	for	get	username

	*	@param	bufsize	The	buffer	size	of	user

	*

	*	@return	0:	User	not	logged	in	or	error

	*									1:	User	logged	in.	The	user	name	is	written	to	given	"user"

	*/

int	IsUserLogin(char	*user,	int	bufsize)

{

				FILE	*fp	=	NULL;

				char	buf[1024];

				int	login	=	0;

				bzero(user,	bufsize);

				fp	=	popen("/usr/syno/synoman/webman/modules/authenticate.cgi",	"r");

				if	(!fp)	{

								return	0;

				}

				bzero(buf,	sizeof(buf));

				fread(buf,	1024,	1,	fp);

				if	(strlen(buf)	>	0)	{

								snprintf(user,	bufsize,	"%s",	buf);

								login	=	1;

				}

				pclose(fp);

				return	login;

}

int	main(int	argc,	char	**argv)

Application	Authentication

85

{

				char	user[256];

				printf("Content-Type:	text/html\r\n\r\n");

				if	(IsUserLogin(user,	sizeof(user))	==	1)	{

								printf("User	is	authenticated.	Name:	%s\n",	user);

				}	else	{

								printf("User	is	not	authenticated.\n");

				}

				return	0;

}

How	to	run	the	test.cgi
DSM	might	require	a	random	value	called	SynoToken	to	prevent	a	CSRF(cross-site	request	forgery)	attack	after	4.3.	When	CSRF
protection	is	enabled	in	the	control	panel,	you	must	append	SynoToken	to	the	query	string	or	header	of	the	HTTP	request.

In	the	query	string:

http://192.168.1.1:5000/webman/3rdparty/MyPackageName/webapi/test.cgi?SynoToken=9WuK4Cf50Vw7Q

In	the	request	header:

X-SYNO-TOKEN:9WuK4Cf50Vw7Q

The	value	of	SynoToken	can	be	obtained	from	login.cgi	if	the	user	is	logged	in.

Request:

http://192.168.1.1:5000/webman/login.cgi

Response:

{"SynoToken":	"9WuK4Cf50Vw7Q",	"result":	"success",	"success":	true}

Getting	the	SynoToken	for	test.cgi
If	your	application	is	based	on	ExtJs	of	DSM,	please	include	dsmtoken.cgi	in	your	header	section.

<header>

	<script	src="/webman/dsmtoken.cgi"	>	</script>

</header>

Once	the	dsmtoken.cgi	is	included,	Ext.Ajax.Request,	Ext.data.Connection,	Ext.form.basicForm	and	Ext.urlAppend	will
append	SynoToken	to	the	HTTP	request	automatically.

<script>

	Ext.Ajax.Request({	…	})	//	add	SynoToken	at	event	'beforerequest'

	Ext.data.Connection({	…	})	//	add	SynoToken	at	event	'beforerequet'

	new	Ext.form.basicForm({	…	})	//	add	SynoToken	at	event	'beforeaction'

//	Ext.urlAppend	will	add	SynoToken	internally

	url	=	Ext.urlAppend('http://192.168.1.1',	Ext.urlEncode({	…	}));

</script>

Application	Authentication

86

Privilege	Config

To	make	your	package	work,	there	must	exist	 	conf/privilege		inside	your	package.	It	controls	security	related	behaviours	in
entire	package	lifecycle.

{

		"defaults":{

				"run-as":	"package"

		},

		"username":	"myusername",

		"groupname":	"mygroupname",

		"tool":	[{

				"relpath":	"bin/mytool",

				"user":	"package",

				"group":	"package",

				"permission":	"0700"

		}]

}

defaults	(required)

Controls	default	settings	for	entire	privilege	file.	It	can	only	be	set	as	value	below.

run-as behaviour	on	file behaviour	on	script

	package	 	chown	-hR	"${package}:${package}"	 set	resuid	as	[username]

run-as behaviour	on	file behaviour	on	script

	root	 	chown	-hR	"root:root"	 set	resuid	as	root

username	/	groupname	(optional)	(since	6.0-5940)

Specify	which	name	will	be	the	user	name	and	group	name.	If	not	specified,	the	package	name	will	be	the	default	value.

join-groupname	(optional)	(since	6.1-14720)

Specify	which	system	group	does	[username]	need	to	join.

"join-groupname":	"http"

join-pkg-groupnames	(optional)	(since	7.0-40748)

Specify	which	package	group	does	[username]	need	to	join.	It	would	work	even	the	target	package	is	installed	later.

"join-pkg-groupnames":	[

		{"packagename":	"anotherpkgname"}

]

ctrl-script	(optional)

Control	the	identity	to	run	scripts.

"ctrl-script":	[{

Privilege	Config

87

		"action":	"start",

		"run-as":	"package"

}]

Member Since Description

	action	
6.0-
5891

one	of	 	preinst	,	 	postinst	,	 	preuninst	,	 	postuninst	,	 	preupgrade	,	 	postupgrade	,	 	start	,
	stop	,	 	status	,	 	prestart	,	 	prestop	

	run-as	
6.0-
5891 see	the	description	above

executable	(optional)

Specify	the	identity	to	chown	on	installed	for	specific	file.

"executable":	[{

		"relpath":	"bin/mybin",

		"run-as":	"package"

}]

Member Since Description

	relpath	 6.0-5891 relative	path	under	 	/var/packages/[package_name]/target	

	run-as	 6.0-5891 see	the	description	above

tool	(optional)

Specify	the	identity	to	chown	and	chmod	on	installed	for	specific	file.

If	you	want,	you	can	even	set	file	capabilities.

"tool":	[{

		"relpath":	"bin/mytool",

		"user":	"package",

		"group":	"package",

		"permission":	"0700"

}]

Member Since Description

	relpath	 6.0-5891 String,	the	file's	relative	path	under	/var/packages/${package}/target/.

	user	 6.0-5891 String,	file's	owner	user,	must	be	"package".

	group	 6.0-5891 String,	file's	owner	group,	must	be	"package"

	permission	 6.0-5891 4	digit	number	to	set	file	permission,	for	example:	4750

"tool":	[{

		"relpath":	"bin/mytool",

		"user":	"package",

		"group":	"package",

		"capabilities":	"cap_chown,cap_net_raw",

		"permission":	"0700"

}]

Member Since Description

Privilege	Config

88

	capabilities	 7.0-40656 capabilities	string	without	any	 	+-=eip		symbol.	the	value	can	be	viewed	HERE

Package	User	/	Group	Visibility	On	UI
Package	users	and	groups	will	not	appear	on	most	UI	settings,	but	there	are	some	exceptions:

[x]	Application	privilege	permission	viewer
[x]	FTP	chroot	user	selector
[x]	File	Station

[x]	Change	owner
[x]	Shared	Links	Manager	->	Enable	secure	sharing

[o]	Control	Panel	>	Shared	Folder	>	Edit	>	Permission	>	System	internal	user
[o]	ACL	editor

Privilege	Config

89

http://man7.org/linux/man-pages/man7/capabilities.7.html

Resource	Config
It	defines	the	system	resource	that	is	neccesary	for	this	package	to	work.

{

		"<resource-id>":	{

				<specification>

		}

}

For	example,	you	can	apply	/usr/local	linker:

{

		"usr-local-linker":	{

				"lib":	["lib/foo"],

				"bin":	["bin/foo"],

				"etc":	["etc/foo"],

		}

}

From	this	example,	the	 	usr-local-linker		represents	the	resource	id	and	its	value	represents	the	file	to	be	linked.

Data	from	Wizard

As	mentioned	in	WIZARD_UIFILES,	installation	scripts	can	read	value	in	wizard.	The	resource	file	are	also	capable	of	doing	this
by	giving	variables	surrounded	by	 	{{}}		which	will	be	replaced	by	the	value	from	wizard:

{

				"data-share":	{

								"shares":	[

												{

																"name":	"{{pkgwizard_share_name}}",

																"permission":	{

																				"ro":	["admin"]

																}

												}

]

				}

}

	{{pkgwizard_share_name}}		will	be	replaced	by	the	value	of	 	pkgwizard_share_name		component	in	wizard

Resource	Config

90

Resource	Timing
Every	worker	acquires	resources	at	certain	timings	and	holds	it	during	an	interval.	For	example,	/usr/local	linker	holds	the
resource	during	the	interval	 	FROM_ENABLE_TO_DISABLE	,	which	means	it	acquires	resource	at	 	WHEN_ENABLE		and	releases	it	at
	WHEN_DISABLE	.	The	timings	are	listed	and	explained	below:

timing descrioption when	Failure

	WHEN_PREINST	 before	preinst abort	installation,	rollback,	show	alert
message	on	UI

	WHEN_POSTINST	 before	postinst finish	installation,	show	alert	message	on	UI

	WHEN_ENABLE	
before	 	WHEN_STARTUP	,	won't	process	during
bootup

abort	startup,	rollback,	show	alert	message	on
UI

abort	startup,	rollback,	show	alert	message	on

Resource	Timing

91

	WHEN_STARTUP	 before	start abort	startup,	rollback,	show	alert	message	on
UI

	WHEN_PREUNINST	 after	preuninst finish	uninstallation,	show	alert	message	on
UI

	WHEN_POSTUNINST	 before	postuninst finish	uninstallation,	show	alert	message	on
UI

	WHEN_DISABLE	
after	 	WHEN_HALT	,	won't	process	during
shutdown ignore

	WHEN_HALT	 after	stop ignore

NOTE	To	let	the	package	itself	decide	whether	uninstallation	should	continue	or	not,	 	WHEN_PREUNINST		is	processed	after	the
	preuninst		script.

Resource	Timing

92

Resource	Update
Some	workers	support	update	operation	outside	of	worker	timings.	/usr/syno/sbin/synopkgheler	should	be	used	to	accomplish	this
job.	Below	are	the	steps	to	update	the	resource:

1.	 Update	the	file	at	 	/var/packages/[package_name]/conf/resource	
2.	 Execute	the	command	 	/usr/syno/sbin/synopkghelper	update	[package_name]	[resource_id]		to	trigger	updating

procedure.

For	example,	suppose	a	package	allows	the	user	to	edit	its	listening	port	and	needs	to	update	correponding	network	settings:

1.	 User	submits	new	port	to	the	application
2.	 The	application	updates	the	file	at	 	/var/packages/[package_name]/conf/resource	
3.	 The	application	executes	the	command	 	/usr/syno/sbin/synopkghelper	update	${package}	port-config	,	then	the	 	port-

config		worker	will	read	the	config	and	reload	network	settings.

NOTE	Not	all	resource	support	update	operation,	please	refer	to	the	Updatable	section	of	each	resource.

Resource	Update

93

Available	Workers
As	mentioned	in	the	section	Resource,	a	worker	is	needed	for	resource	management.

Given	a	Resource	Config	file,	the	resource	worker	will	acquire	/	release	the	resource	at	certain	time.	This	section	describes	the
available	resource	workers	on	the	DSM.

Resource	List

94

/usr/local	linker

Description

Package's	executables	and	library	files	should	be	installed	to	/usr/local.	This	worker	link	/	unlink	files	to	/usr/local/{bin,lib,etc}
during	package	start	/	stop.

	Acquire()	:	Create	symbolic	links	under	/usr/local/{bin,lib,etc}/	that	points	to	files	in	/var/packages/${package}/target/.
Files	not	found	under	/var/packages/${package}/target/	will	be	ignored.
If	the	target	file	already	exists	in	/usr/local/{bin,lib,etc},	it	will	be	 	unlink()		first.
Failure	on	any	file	link	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	links	under	/usr/local/{bin,lib,etc}/.
Ignore	files	that	are	not	found.
Ignore	 	unlink()		failure.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"usr-local-linker":	{

		"bin"	["<relpath>",	...],

		"lib"	["<relpath>",	...],

		"etc"	["<relpath>",	...]

}

Member Since Description

	bin	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/bin/.

	lib	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/lib/.

	etc	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/etc/.

	relpath	 6.0-5941 String,	target	file's	relative	path	under	/var/packages/${package}/target/.

Example

"usr-local-linker":	{

		"bin":	["usr/bin/a2p",	"usr/bin/perl"],

Resource	List

95

		"lib":	["lib/perl5"]

}

The	above	specifications	generates	the	following	symbolic	links	for	the	Perl	package:

root@DS	$	ls	-l	/usr/local/{bin,lib,etc}

/usr/local/bin/:

total	0

lrwxrwxrwx	1	root	root			30	Aug	13	06:32	a2p	->	/var/packages/Perl/target/usr/bin/a2p

lrwxrwxrwx	1	root	root			31	Aug	13	06:32	perl	->	/var/packages/Perl/target/usr/bin/perl

/usr/local/lib/:

total	0

lrwxrwxrwx	1	root	root			28	Aug	13	06:32	perl5	->	/var/packages/Perl/target/lib/perl5

/usr/local/etc/:

total	0

Resource	List

96

Apache	2.2	Config

Description

Packages	can	carry	sites-enabled/*.conf	files	for	Apache	HTTP	Server	2.2.	This	worker	installs	/	uninstalls	these	config	files
during	package	start	/	stop.

	Acquire()	:	Copy	the	conf	files	to	/usr/local/etc/httpd/sites-enabled/.	Then	reload	Apache	2.2.
The	files	should	have	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be	 	unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore	 	unlink()		failure.

Provider

WebStation

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"apache22":	{

				"sites-enabled":	[{

								"relpath":	"<conf-relpath>",

				},	...]

}

Member Since Description

	sites-enabled	 WebStation-1.0-0049 Object	array,	list	of	conf	files	to	install.

	relpath	 WebStation-1.0-0049 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

{

				"apache22":	{

								"sites-enabled":	[{

												"relpath":	"synology_added/test_1.conf"

Resource	List

97

								},	{

												"relpath":	"synology_added/test_2.conf"

								},	{

												"relpath":	"synology_added/test_3.conf"

								}]

				}

}

Resource	List

98

Data	Share

Description

This	worker	creates	shared	folder	and	set	its	permission	during	package	startup.	The	share	name	can	be	hard-coded	in	the
specification	or	given	by	user	input	from	the	UI	wizard.	The	shared	folder	will	not	be	removed	after	package	uninstallation,	since
it	might	delete	the	user’s	personal	data	as	well.

	Acquire()	:	Create	shared	folder	and	set	its	permission.
If	the	shared	folder	already	exists,	skip	share	creation	and	set	the	permission.

	Release()	:	Does	nothing.

Provider

DSM

Timing
	FROM_ENABLE_TO_POSTUNINST	

Environment	Variables

None

Updatable

No

Syntax

"data-share":	{

		"shares":	[{

				"name":	"<share-name>",

				"permission":	{

						"ro":	["<user-name>",	...],

						"rw":	["<user-name>",	...]

				},

				"once":	"<once>"

		},	...]

}

Member Since Description

	shares	 6.0-5914 Object	array,	array	of	shares	to	create

	name	 6.0-5914 String,	name	of	the	share,	can	be	obtained	from	the	UI	wizard

	permission	 6.0-5914 Json	object,	permission	of	the	share.	(optional)

	ro	 6.0-5914 String	array，users	to	be	assigned	with	read-only	permission.

	rw	 6.0-5914 String	array，users	to	be	assigned	with	read	/	write	permission.

	once	 6.0-5914 Boolean,	only	try	to	create	share	on	package's	first	start.	(optional,	default	=	 	false)

Example

Resource	List

99

Example

The	following	specification	creates	a	share	music,	and	gives	the	user	AudioStation	read-only	permission.	Since	 	once		defaults	to
	false	,	the	above	procedure	is	ran	every	time	the	package	starts.

"data-share":	{

		"shares":	[{

				"name":	"music",

				"permission":	{

						"ro":	["AudioStation"]

				}

		}]

}

The	following	specification	reads	the	share	name	from	WIZARD_UIFILES/install_uifile's	 	pkgwizard_share_name	,	and	gives	the
user	admin	read-only	permission.

"data-share":	{

		"shares":	[{

				"name":	"{{pkgwizard_share_name}}",

				"permission":	{

						"ro":	["admin"]

				}

		}]

}

Resource	List

100

Index	DB

Description

Index	/	unindex	package	help	and	app	index	during	package	start	/	stop.

For	detailed	description	on	package	app	index	and	help	index,	please	refer	to	Integegrate	Help	Document	into	DSM	Help.

	Acquire()	:	Index	package	help	and	app	content.
	Release()	:	Un-index	package	help	and	app	content.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<app	db	relpath>"

				},

				"help-index":	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<help	db	relpath>"

				}

}

Member Since Description

	app-index	 6.0-5924 Object,	app	index	info.

	help-index	 6.0-5924 Object,	help	index	info.

	conf-relpath	 6.0-5924 String,	config	file's	relative	path	under	/var/packages/${package}/target/.

	db-relpath	 6.0-5924 String,	db	folder's	relative	path	under	/var/packages/${package}/target/.

Example

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"app/index.conf",

Resource	List

101

								"db-relpath":	"indexdb/appindexdb"

				},

				"help-index":	{

								"conf-relpath":	"app/helptoc.conf",

								"db-relpath":	"indexdb/helpindexdb"

				}

}

Resource	List

102

Maria	DB

Description

Create	/	delete	database	and	db-user	during	package	install	/	uninstall.	The	database	name	can	be	hard-coded,	read	from	config	file
or	given	by	the	user	from	UI	wizard.	Package	developer	can	decide	if	creating	a	corresponding	db-user	is	needed	or	not.

	Acquire()	:	Create	database	and	db-user	accroding	to	resource	specification.
database:	resource	specification	can	specify	what	action	to	take	if	a	database	with	the	same	name	already	exists:
1.	 	drop		:	Delete	the	existing	database.
2.	 	skip		:	Ignore	database	creation,	keep	the	existing	database	and	conitinue	installation.
3.	 	error	:	Return	error	and	rollback.	(Default:	 	error)

db-user:	Create	db-user	and	grant	access	to	the	database	according	to	the	resource	specification.	The	default	db-user	to
create	is	 	'${package}'@'localhost'	

	Release()	:	Delete	database	and	db-user	accroding	to	the	resource	specification.	Default	is	to	keep	the	database	and	db-
user.
During	package	upgrade,	MariaDB	worker	provides	the	get_key_value	method	to	obtain	previously	create	database's	name,
and	there	will	be	no	create	/	delete	for	database	and	db-user

Provider

MariaDB

Timing
	FROM_PREINST_TO_PREUNINST	

Environment	Variables

Variable Since Description

	SYNOPKG_DB_USER_RAND_PW	 6.0-5920 The	random	password	generated	during	datebase	user	creation.

Updatable

No

Syntax

((*)		required)

"mysql-db":	{

				"info":	{

								"db-name":	"<db	name>",					(*)

								"conf":	"<conf>",

								"key":	"<key>"

				},

				"root-pw":	"<db	password>",	(*)

				"create-db"	:	{

								"char-set":	"<character-set>",

								"collate":	"<collate>",

								"db-collision":	"drop"	|	"skip"	|	"error"

				},

				"grant-user":	{

Resource	List

103

								"user-name"	:	"<db	username>",

								"host"						:	"<db	user	host>",

								"user-pw"			:	"<user	password>",

								"rand-pw"			:	true	|	false

				},

				"drop-db-uninst":	true	|	false,

				"drop-user-uninst":	true	|	false

}

Member Since Description

	info	
5.5.47-
0062

Object,	info	of	db-name.	The	priority	of	retrieving	database's	name	is	 	db-name		>	 	conf	.
Which	means,	if	db-name	is	given,	conf	and	key	will	be	ignored.

	db-name	
5.5.47-
0062 String,	database	name,	can	be	given	by	UI	wizard.

	conf	
5.5.47-
0062 String,	file	containing	the	database	name's	key-value-pair.

	key	
5.5.47-
0062 String,	the	key	in	 	conf		file	to	look	for	db-name.

	root-pw	
5.5.47-
0062 String,	root	password	of	MariaDB.

	create-db	
5.5.47-
0062 Object,	info	of	database.	If	does	not	exist,	database	will	not	be	created	during	 	Acquire()	.

	character-

set	

5.5.47-
0062 String,	database's	CHARACTER	SET.	(default	=	utf8)

	collate	
5.5.47-
0062 String,	database's	COLLATE.	(default	=	utf8_unicode_ci)

	db-

collision	

5.5.47-
0062 String,	action	to	take	if	the	database	exists.	Can	be	 	drop	/ 	skip	/ 	error	.

	grant-

user	

5.5.47-
0062 Object,	info	of	db-user.	If	does	not	exist,	db-user	will	not	be	created	during	 	Acquire()	.

	user-name	
5.5.47-
0062 String,	db-user	name.	(default	=	 	${package})

	host	
5.5.47-
0062 String,	db-user's	host.	(defaults	=	 	localhost)

	user-pw	
5.5.47-
0062

String,	db-user's	password.	If	empty	or	null,	db-user's	password	will	not	be	set.	Overrides
existing	user's	password.

	rand-pw	
5.5.47-
0062

Boolean,	whether	to	generate	a	random	password.	If	set	to	 	true	,	the	db-user	will	be	given	a
random	password	and	be	passed	to	environment	variable	 	SYNOPKG_DB_USER_RAND_PW	.	If
	user-pw		exists,	this	value	will	be	ignored.

	drop-db-

uninst	

5.5.47-
0062

Boolean,	whether	to	delete	database	during	 	Release()	.	Can	be	given	by	UI	wizard.
(defaults	=	 	false)

	drop-user-

uninst	

5.5.47-
0062

Boolean,	whether	to	delete	db-user	during	 	Release()	.	Can	be	given	by	UI	wizard.	(defaults
=	 	false)

Example

"mysql-db":	{

				"info":	{

								"db-name":	"wordpressblog"

				},

				"root-pw":	"{{pkgwizard_mysql_password}}",

Resource	List

104

				"create-db"	:	{

								"db-collision":	"skip"

				},

				"grant-user":	{

								"user-name"	:	"wordpress"

				},

				"drop-db-uninst":	"{{pkgwizard_remove_mysql}}",

				"drop-user-uninst":	"{{pkgwizard_remove_mysql}}"

}

Resource	List

105

PHP	INI

Description

Packages	can	carry	custom	php.ini	and	fpm.conf	files.	This	worker	installs	/	uninstalls	these	config	files	during	package	start	/
stop.

	Acquire()	:	Copy	the	php.ini	and	fpm.conf	files	to	/usr/local/etc/php56/conf.d/	and	/usr/local/etc/php56/fpm.d/.	Then	reload
php56-fpm.

php.ini	/	fpm.conf	files	should	have	.ini	/	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be	 	unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore	 	unlink()		failure.

Provider

PHP5.6

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"php":	{

					"php-ini":	[{

									"relpath":	"<ini-relpath>",

					},	...],

					"fpm-conf":	[{

									"relpath":	"<conf-relpath>",

					},	...]

	}

Member Since Description

	php-ini	 PHP5.6-5.6.17-0020 Object	array,	list	of	php.ini	files	to	install.

	fpm-conf	 PHP5.6-5.6.17-0020 Object	array,	list	of	fpm.conf	files	to	install.

	relpath	 PHP5.6-5.6.17-0020 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

Resource	List

106

{

				"php":	{

								"php-ini":	[{

												"relpath":	"synology_added/etc/php/conf.d/test_1.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_2.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_3.ini"

								}],

								"fpm-conf":	[{

												"relpath":	"synology_added/etc/php/fpm.d/test_1.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_2.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_3.conf"

								}]

				}

}

Resource	List

107

Port	Config

Description

Install	/	uninstall	service	port	config	file	during	package	install	/	uninstall.

For	detailed	description	on	what	is	and	how	to	write	a	port	config	file,	please	refer	to	Install	Package	Related	Ports	Information
into	DSM.

	Acquire()	:	copy	the	.sc	file	to	/usr/local/etc/service.d/
If	the	destination	file	exists,	skip	file	copy.

	Release()	:	remove	the	.sc	file	and	reload	the	firewall	and	portforward.
	Update()	:	update	the	.sc	file	and	reload	firewall	and	portforward.

Timing
	FROM_POSTINST_TO_POSTUNINST	

Environment	Variables

None

Updatable

Yes,	please	refer	to	Config	Update	on	how	to	trigger	update.

Syntax

"port-config":	{

				"protocol-file":	<protocol_file>

	}

Member Since Description

	protocol_file	 6.0-5936 .sc	file's	relative	path	under	/var/package/{$package}/target/

Example

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Resource	List

108

Systemd	User	Unit

Description

The	package	framework	would	copy	files	at	 	conf/systemd/pkguser-[customname]		to	 	home/.config/systemd/user/		on
acquired	and	remove	them	on	released.

note	that	user	unit	cannot	be	related	with	normal	systemd	unit.	If	you	need	your	package	to	be	related	with	system	service,
please	refer	to	start_dep_services

The	package	should	use	 	synosystemctl	start		and	 	synosystemctl	stop		to	control	user	units	inside	scripts.

Extra

If	you	want	to	have	systemd	unit	inside	the	system,	you	may	just	put	your	units	at	 	conf/systemd/pkg-[customname]		without	the
need	to	use	this	 	systemd-user-unit		worker.

The	package	framework	would	copy	systemd	units	to	 	/usr/local/lib/systemd/system		on	acquired	and	remove	them	on
released.

Provider

DSM

Since

7.0-40761

Timing
	FROM_POSTINST_TO_POSTUNINST	

Syntax

"systemd-user-unit":	{}

Resource	List

109

https://www.freedesktop.org/software/systemd/man/systemd.unit.html

Syslog	Config

Description

Install	/	uninstall	the	syslog-ng	and	logrotate	config	file	during	package	start	/	stop.

Please	refer	to	syslog-ng	on	how	to	write	the	syslog-ng's	config	file.

	Acquire()	:	Copy	patterndb	/	logratoate	to	/usr/local/etc/syslog-ng/patterndb.d/	/	/usr/local/etc/logrotate.d/.	Then	reload
syslog-ng.

If	file	exists,	 	unlink()		it	first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	config	files	and	reload	syslog-ng.
Ignore	 	unlink()		failure.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"syslog-config":	{

		"patterndb-relpath":	"<relpath>",

		"logrotate-relpath":	"<relpath>"

}

Member Since Description

	patterndb-

relpath	

6.0-
7145

String,	syslog-ng's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore
this	if	the	log	is	not	generated	by	syslog-ng	(optional)

	logrotate-

relpath	

6.0-
5911

String,	logrotate's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore
this	if	log	is	saved	to	database	(optional)

Example

"syslog-config":	{

		"patterndb-relpath":	"etc/syslog-ng.conf",

		"logrotate-relpath":	"etc/logrotate.conf"

}

Resource	List

110

https://syslog-ng.org/

Web	Service	(since	DSM7.0)

Description

When	in	install/remove	package	stage,	worker	will	update/remove	service	and	default	portal	setting.

When	in	start/stop	package	stage,	worker	will	start/stop	service	setting.

FROM_PREINST_TO_PREUNINST

	Acquire()	:	sync	information	in	user	specified	 	/var/package/${package}/target/*.json		into	user	setting,	do	migrate	and
setup	portal	and	service	which	user	specify	in	resource	file
	Release()	:	remove	user's	setting

FROM_ENABLE_TO_DISABLE

	Acquire()	:	copy	 	*.json		and	 	.mustache		under	 	/var/packages/${package}/target/		into	 	/usr/syno/etc/www/app.d/	
and	enable	service	setting.
	Release()	:	remove	files	which	copied	into	 	/usr/syno/etc/www/app.d/		and	disable	service	setting

Provider

WebStation

Timing

	FROM_PREINST_TO_PREUNINST		 	FROM_ENABLE_TO_DISABLE	

Lower	privilege

According	to	package	center	privilege	policy,	web	package	will	get	a	confined	privilege	during	installation	and	run	time.	In	order
to	setup	environment	for	web	package,	webservice	worker	provide	a	mechanism	called	 	pkg_dir_prepare		to	assist	web	package
creating	website	root	directory	and	setting	corresponding	owner,	group.	The	detail	of	pkg_dir_prepare	will	be	elaborate	in
pkg_dir_prepare	section.

Environment	Variables

None

Updatable

No

Syntax

"webservice":{

				"services":	[{

								service	setting	1

				},{

								service	setting	2

				}...],

				"portals":	[{

								default	portal	setting	1

				},{

Resource	List

111

								default	portal	setting	2

				}],

				"migrate":	{

								Migration	data

				},

				"pkg_dir_prepare":	[{

								package	directory	prepare	settings

				}]

}

Key Since Type Required Nullable Default
Value Description

	services	
3.0.0-
0214 Array true false N/A List	services	which	are	wanted

to	be	registered

	portals	
3.0.0-
0214 Array false true Empty

array
List	default	portal	for	services
(Unnecessary)

	migrate	
3.0.0-
0214 Object false true Empty

object
Migrate	information
(Unnecessary)

	pkg_dir_prepare	
3.0.0-
0256 Array true false Empty

array
Setting	specification	of	website
root	under	web_package

Framework	will	use	default	value	when	field	is	not	required	and	doesn't	exist	or	is	null.

services

Web	services	which	are	going	to	register,	allow	multiple	web	services	to	register.	For	more	detail	please	see	Web	Service

portals

Default	portal	which	are	going	to	register	for	access	portal	of	services	and	will	craete	UI	Shortcut.	Devided	into	 	server	portal	
and	 	alias	portal	.

Important:	Default	server	portal	is	not	allowed	registered	as	name	base	portal,	since	you	may	not	be	able	to	lookup
FQDN's	correct	IP	from	client	side.

Example:

Alias	Portal

{

				"service":	"wordpress",

				"name":	"wordpress",

				"app":	"SYNO.SDS.WordPress",

				"type":	"alias",

				"alias":	"wordpress"

}

Server	Portal

{

				"service":	"wordpress",

				"name":	"wordpress",

				"app":	"SYNO.SDS.WordPress",

				"type":	"server",

				"http_port":	[9000],

				"https_port":	[9001]

}

Key Since type Required Nullable Default
Value Description

3.0.0- portal	service	name	that	portal	link,

Resource	List

112

service 3.0.0-
0214 string true false N/A corresponding	to	 	service		field	in

service	that	is	about	to	register

name 3.0.0-
0214 string true false N/A portal	name,	also	being	title	of	service's

UI	Shortcut

app 3.0.0-
0214 string false true empty

string pacakge's	UI	App	name

type 3.0.0-
0214 string true false N/A portal's	type,	could	be	alias	or	server

alias 3.0.0-
0214 string

true	(if
type	is
alias)

false N/A alias	name

http_port 3.0.0-
0214

int
array false false

empty
array	(if
type	is
server)

Http	port	setting	for	server	portal,	only	1
port	allowed.	There	should	be	at	least
http_port	or	https_port	or	both.

https_port 3.0.0-
0214

int
array false false

empty
array	(if
type	is
server)

Https	port	setting	for	server	portal,	only	1
port	allowed.	There	should	be	at	least
http_port	or	https_port	or	both.

migrate

Migrate	assist	package	migration	from	older	version	(<	DSM7.0)	to	newer	version.	Supporting	two	kinds	of	migrate	setting	-
	root		and	 	vhost	.

root

"root":	[{

				"old":	"wordpress",

				"new":	"wordpress"

}]

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 array false true empty

array
Migrate	web	package	from	web	share	folder	to
web_packages	share	folder.

old 3.0.0-
0214 string true false N/A name	of	old	package	which	in	web	share

folder.

new 3.0.0-
0214 string true false N/A name	of	new	package	which	in	web_packages

share	folder.

vhost

"vhost":	[{

				"root":	"wordpress",

				"service":	"wordpress"

}]

Key Since type Required Nullable Default
Value Description

vhost 3.0.0-
0222 array false true empty

array
Migrate	virtualhost,	which	pointing	to	old
package,	to	service	portal.

root 3.0.0-
0222 string true false N/A name	of	old	pacakge	which	in	web	share

folder.

Resource	List

113

root 0222 string true false N/A folder.

service
3.0.0-
0222 string true false N/A new	package's	service	name

pkg_dir_prepare

Webservice	worker	will	set	up	website	root	directory	under	 	web_packages		according	to	the	information	web	package	specified	in
worker	config.	The	worker	will	remove	the	 	target		directory	under	web_package	between	preuninst	and	postuninst.	Make	sure
to	backup	your	website	root	in	preuninst	script	during	upgrade.

pkg_dir_prepare	example:

"pkg_dir_prepare":	[{

				"source":	"/var/package/WordPress/target/src",

				"target":	"wordpress",

				"mode":	"0755",

				"group":	"http",

				"user":	"WordPress"

}]

Key Since type Required Nullable Default
Value Description

source 3.0.0-
0256 string false true N/A

Your	web	package	source	code	directory.
Mostly	it	will	be	under	package	target	path
(/var/package/$PKG_NAME/target/).
Webservice	worker	will	move	your	 	source	
directory	to	 	target		directory	and	set	owner
group	according	to	your	 	user:group	
specification.	Note	that	you	should	specify	a
full	path	in	 	source		field.

target 3.0.0-
0256 string true false N/A

Your	website	root	directory.	 	target	
directory	wil	be	created	under	web_packages
directory.	Webservice	worker	will	move
	source		directory	to	 	target		and	setted
with	corresponding	owner	group	according	to
your	 	user:group		specification.	You	sould
only	specify	a	relative	path	based	on
web_packages.	Note	that	when	 	source		field
is	not	specified,	webservice	worker	will	only
create	 	target		directory	and	set	owner
group	for	 	target		directory.

mode 3.0.0-
0256 string true false N/A 	target		directory	access	mode	e.g.	"0755",

"0644"	...	etc.

group 3.0.0-
0256 string true false N/A Name	of	 	target		directory	group	ownership.

user 3.0.0-
0256 string true false N/A Name	of	 	target		directory	user	ownership.

Web	Service

Package	could	register	to	WebStation	via	WebStation	webapi	or	Package	Worker.

Web	Service	support	following	types
static	service

static	web	pages	web	services
nginx_php	service

Resource	List

114

web	service	that	useing	Nginx	as	HTTP	server	and	PHP	as	scripts,	e.g.	phpMyAdmin
Will	generate	PHP	Profile	after	service	registered.	You	can	modify	it	in	WebStation	->	Script	Language	Settings	->
PHP.

apache_php	service
web	service	that	using	Apache	as	HTTP	server	adn	PHP	as	scripts,	e.g.	WordPress
Will	gengerate	PHP	Profile	after	service	registerd.	You	can	modify	it	in	WebStation	->	Script	Language	Settings	->
PHP.

reverse_proxy	service
web	service	depending	on	reverse	proxy,	e.g.	Docker-GitLab

common	field

Key Since type Required Nullable Default
Value Description

service 3.0.0-
0214 string true false N/A service	name

display_name 3.0.0-
0214 string true false N/A service	display	name

display_name_i18n 3.0.0-
0214 string false true null service	displayed	in	different

language	(optional)

support_alias 3.0.0-
0214 bool false false true Whether	support	alias	portal,

downgrade	is	not	allowed

support_server 3.0.0-
0214 bool false false true Whether	suport	server	portal,

downgrade	is	not	allowed

icon 3.0.0-
0214 string false true null

icon	path,	relative	path	from
package's	 	target	.	Resolution
should	replaced	in	 	{0}	.	For
now,	we	only	support	png
format.	Will	use	default	icon	if
this	field	is	empty.

type 3.0.0-
0214 string true false N/A service	type

php 3.0.0-
0214 object true false N/A

php-fpm	setting	including
	profile_name	,	 	backend	,
	open_basedir	,	 	extensions	,
...	etc.	The	detail	will	be	shown
as	following	section.

Detail	of	php	profile

Key Since type Required Nullable Default
Value Description

profile_name 3.0.0-
0214 string true false N/A Name	of	default	php	profile,	user	may

not	modify	this	field.

profile_desc 3.0.0-
0214 string true false N/A Description	of	php	profile

backend 3.0.0-
0214 int true false N/A

php	version,	3	for	PHP5.6,	4	for
PHP7.0,	5	for	PHP7.1,	6	for	PHP7.2
and	7	for	PHP7.3,	user	may	not
modify	this	field

open_basedir 3.0.0-
0214 string false true empty

string
default	php	open_basedir，user	may
modify	this	field.

Resource	List

115

0214 string modify	this	field.

extensions 3.0.0-
0214

string
array

false true empty
array

default	switched	on	php	extension,

user	may	not	switch	of	these	php
extension;	however,	they	may	switch
on	others

php_settings 3.0.0-
0214 object false true empty

object
key	value	pairs,	define	php	ini	setting,
user	may	modify	this	field.

user 3.0.0-
0256 string true false N/A

Name	of	user	with	privilege	while
php-fpm	accessing	your	website.	Note
that	the	value	of	 	user		should	be	the
same	as	pkg_dir_prepare	user	in	order
to	access	your	website	correctly.

group 3.0.0-
0256 string true false N/A

Name	of	group	with	privilege	while
php-fpm	accessing	your	website.	Note
that	the	value	of	 	group		should	be	the
same	as	pkg_dir_prepare	group	in
order	to	access	your	website	correctly.

static	service

When	type	is	static,	system	will	serve	your	pacakge	with	nginx.

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 string true false N/A

service	working	directory,	will
be	treated	as	absolute	path	if	start
with	 	/	,	otherwise,	relative	path
to	 	web_pacakges	

index 3.0.0-
0214

string
array false true ["index.html",

"index.html"]

static	service's	index	file.	note
use	default	value	if	 	null		in	this
field

custom_rule 3.0.0-
0214 object false true empty	object

Support	customized	routing	rule.
For	more	detail,	please	see
Custom	rule

static	service	worker	setting	example:

{

								"service":	"static",

								"display_name":	"static	service",

								"support_alias":	true,

								"support_server":	true,

								"type":	"static",

								"root":	"static_dir",

								"icon":	"ui/Wordpress_{0}.png"

				}

nginx_php	service

When	type	is	nginx_php,	system	will	serve	your	package	with	nginx.	The	php	file	will	be	executed	by	php-fpm.	Php-fpm	default
behavior	can	be	defined	in	field	`php

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 string true false N/A

service	working	directory,
will	be	treated	as	absolute
path	if	start	with	 	/	,

Resource	List

116

root 0214 string true false N/A path	if	start	with	 	/	,
otherwise,	relative	path	to
	web_pacakges	

index 3.0.0-
0214

string
array false true

["index.htm",
"index.html",
"index.php"]

nginx	service's	index	file.
note	use	default	value	if
	null		in	this	field.

custom_rule 3.0.0-
0214 object false true empty	object

Support	customized	routing
rule.	For	more	detail,	please
see	Custom	rule

connect_timeout 3.0.0-
0214 int false false 60

timeout	setting	for
connecting	php-fpm,	in	units
of	second

read_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	getting
response	from	php-fpm,	in
units	of	second

send_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	sending
request	to	php-fpm,	in	units
of	second

php 3.0.0-
0214 object true false N/A define	default	php	profile

nginx_php	service	worker	setting	example:

{

								"service":	"wordpress",

								"display_name":	"WordPress",

								"support_alias":	true,

								"support_server":	true,

								"type":	"nginx_php",

								"root":	"wordpress",

								"icon":	"ui/Wordpress_{0}.png",

								"php":	{

												"profile_name":	"WordPress	Profile",

												"profile_desc":	"PHP	Profile	for	WordPress",

												"backend":	6,

												"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

												"extensions":	[

																"mysql",

																"mysqli",

																"pdo_mysql",

																"curl",

																"gd",

																"iconv"

],

												"php_settings":	{

																"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysqli.default_socket":	"mysqli.default_socket",

																"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysql.default_port":	"3307",

																"mysqli.default_port":	"3307"

												}

								},

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

apache_php	service

Resource	List

117

When	type	is	apache_php,	nginx	will	pass	request	to	apache	server.	The	php	file	will	be	executed	by	php-fpm.	Php-fpm	default
behavior	can	be	defined	in	field	 	php	.	Compare	to	nginx_php,	apache_php	with	additional	filed	 	backend		to	specify	apache
version

Key Since type Required Nullable Default	Value Description

backend 3.0.0-0214 int true false N/A 1	(Apache2.2)	or	2	(Apache2.4)

apache_php	service	worker	setting	example:

{

								"service":	"wordpress",

								"display_name":	"WordPress",

								"support_alias":	true,

								"support_server":	true,

								"type":	"apache_php",

								"root":	"wordpress",

								"backend":	2,

								"icon":	"ui/Wordpress_{0}.png",

								"php":	{

												"profile_name":	"WordPress	Profile",

												"profile_desc":	"PHP	Profile	for	WordPress",

												"backend":	6,

												"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

												"extensions":	[

																"mysql",

																"mysqli",

																"pdo_mysql",

																"curl",

																"gd",

																"iconv"

],

												"php_settings":	{

																"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysqli.default_socket":	"mysqli.default_socket",

																"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysql.default_port":	"3307",

																"mysqli.default_port":	"3307"

												}

								},

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

reverse_proxy	service

When	type	is	reverse_proxy,	nginx	will	proxy	request	to	target	services

Key Since type Required Nullable Default
Value Description

proxy_target 3.0.0-
0214 string true false N/A

Proxy	target,	support	http,
https,	and	unix.	This	value
will	be	filled	in	nginx
proxy_pass	URL.	For	more
detail	please	see	proxy_pass

proxy_headers 3.0.0-
0214 array false true empty

array
define	proxy	relay	header
value	pair	list

proxy_intercept_errors 3.0.0-
0214 bool false false false

specify	whether	letting	nginx
return	error	page	for	your
packages	if	there's	an	error
occur.	Default	is	setting	to
	false	

Resource	List

118

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass

	false	

proxy_http_version

3.0.0-

0214 int false false 1

proxy	http	version,	support

1.0	(0),	1.1	(1)

custom_rule 3.0.0-
0214 object false true empty

object

define	specific	routing	rule,
should	be	compatible	with
support_alias	and
support_server	setting.	For
more	detail	please	see
custom	rule

connect_timeout 3.0.0-
0214 int false false 60

timeout	setting	for
connecting	proxy	target,	in
units	of	second

read_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	getting
response	from	proxy	target,
in	units	of	second

send_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	sending
request	to	php-fpm,	in	units
of	second

You	could	define	proxy	header	to	modify	proxy	behavior,	e.g.	modify	host	or	turn	on	websocket.	If	need	support	of	websocket,
you	should	specify	Upgrade	and	Connection	header	as	shown	below:

Key Since type Required Nullable Default	Value Description

name 3.0.0-0214 string true false N/A header	name

value 3.0.0-0214 string true false N/A header	value

reverse_proxy	service	worker	setting	example:

{

								"service":	"gitlab",

								"display_name":	"Git	Lab",

								"support_alias":	true,

								"support_server":	true,

								"type":	"reverse_proxy",

								"icon":	"ui/gitlab_{0}.png",

								"proxy_target":	"http://gitlab:30000",

								"proxy_headers":	[{

												"name":	"host",

												"value":	"gitlab"

								},{

												"name":	"Upgrade",

												"value":	"$http_upgrade"

								},{

												"name":	"Connection",

												"value":	"$connection_upgrade"

								}]

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

Custom	Rule

You	could	modify	config	via	custom_rule	field	in	json	key	value	format.	Json	key	is	target	name,	json	value	is	target	config's
mustache	file	path。
You	can	reference	 	nginx_service_template.mustache	,	 	apache22_service_template.mustache		and
	apache24_service_template.mustache		under	 	/var/packages/WebStation/target/misc		for	routing	rule	that	you	can

Resource	List

119

modify.
Field	{{	\@json	key\@	}}	in	mustache	template	will	be	replaced	by	files	specified	in	custom_rule
You	should	consider	the	compatibility	between	 	server		and	 	alias	,	and	could	use	{{#alias}}	to	seperate	these	two
different	routing	rules.

Custom	rule	example:

"custom_rule":	{

				"global_rule":	"/var/packages/WordPress/target/misc/nginx_global.mustache",

				"fastcgi_rule":	"/var/packages/WordPress/target/misc/nginx_fastcgi.mustache",

				"proxy_rule":	"/var/packages/WordPress/target/misc/nginx_proxy.mustache",

				"apache_rule":	"/var/packages/WordPress/target/misc/apache.mustache"

}

Custom	rule	type

key affect	target affect	service
type effect

global_rule Nginx all modify	service's	request	behavior

fastcgi_rule Nginx nginx_php modify	behavior	of	request	passed	to
php-fpm

proxy_rule Nginx reverse_proxy modify	behavior	of	request	passed	to
proxy	target

apache_rule Apache2.2	or	Apache2.4	(depends	on
apache	backend) apache_php modify	apache	behavior

Resource	List

120

Port
If	your	package	service	uses	specific	ports	for	communication	(e.g.	Surveillance	Station	uses	ports	19997/udp	for	source	port	and
19998/udp	for	destination	port),	you	should	prepare	a	service	configuration	file	for	this	package	to	describe	which	ports	will	be
used.	After	that,	once	the	user	creates	firewall	rules	or	port	forwarding	rules	from	the	built-in	application,	your	package	service
will	also	be	listed	for	selection.

Service	Configure	File	Name

The	file	name	should	follow	the	naming	convention	[package_name].sc	(ex:	SurveillanceStation.sc).	[package_name]	should
be	the	package	name	that	is	specified	by	the	key	"package"	in	the	INFO	file,	and	sc	means	Service	Configure	file.

Configure	Format	Template

Please	see	the	following	example:

[service_name]

title="English	title"

desc="English	description"

port_forward="yes"	or	"no"

src.ports="ports/protocols"

dst.ports="ports/protocols"

[service_name2]

…

Section/Key	Descriptions

Please	see	the	following	statements	for	the	strings	and	keys:

Section/Key Description Value Default
Value

DSM
Requirement

service_name

Required	

Usually	a	package	only	has	one	unique	service
name.	If	your	package	needs	more	than	one	port
description,	you	can	define	service_name2,
service_name3,	…	

Note:	service_name	cannot	be	empty	and	can
only	include	characters	“a~z”,	“A~Z”,	“0~9”,
“-”,	“\”,	“.”

Unique	service
name N/A 4.0-2206

title

Required	

English	title	which	will	be	shown	on	field
Protocol	at	firewall	build-in	selection	menu.

English	title N/A 4.0-2206

desc

Required	

English	description	which	will	be	shown	on
field	Applications	at	firewall	build-in	selection
menu.

English
description N/A 4.0-2206

Optional	

Port

121

port_forward

If	set	to	“yes,”	your	package	service	related

ports	will	be	listed	when	users	set	port
forwarding	rule	from	build-in	applications.
Otherwise	they	will	not	be	listed.

“yes”	or	“no” “no” 4.0-2206

src.ports

Optional	

If	your	package	service	has	specified	source
ports,	you	can	set	them	in	this	key.	The	value
should	contain	at	least	the	port	numbers,	and	a
default	protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	source	ports
are	6000,	7000	to	8000,	all	ports	are	tcp	+	udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by
‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

dst.ports

Required	

Each	service	should	have	destination	ports.	The
value	should	contain	at	least	the	port	numbers,
and	a	default	protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	destination
ports	are	6000,	7000	to	8000,	all	ports	are	tcp	+
udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by
‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

Please	see	the	following	example	(SurveillanceStation.sc):

[ss_findhostd_port]

title="Search	Surveillance	Station"

desc="Surveillance	Station"

port_forward="yes"

src.ports="19997/udp"

dst.ports="19998/udp"

After	the	service	configuration	file	is	ready,	add	the	following	content	to	the	resource	specification	file.	Please	refer	to	Port	Config
for	more	detail.

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Check	port	conflict
Before	trying	to	change	a	port	number,	you	would	need	to	check	if	the	port	number	was	already	in	use.

How	to	check	if	the	port	number	was	in	use

Assume	the	package	named	DhcpServer	and	the	port-config	DhcpServer.sc	contains:

[dhcp_udp]

title="DHCP	Server"

title_key="DHCP	Server"

desc="DHCP	Server"

desc_key="DHCP	Server"

port_forward="no"

Port

122

dst.ports="67,68/udp"

Please	run	the	following	instructions	to	check	if	the	port	is	in	use	while	you	are	trying	to	change	the	port	number	from	 	67		to
	667	

servicetool	--conf-port-conflict-check		--tcp	667

The	output	would	look	like	this:

root@dev:~#	servicetool	--conf-port-conflict-check		--tcp	667

IsConflict:	false							Port:	667							Protocol:	tcp			ServiceName:	(null)

root@dev:~#

The	return	code	does	not	indicate	port	occupation,	you	need	to	parse	the	standard	output	to	extract	the	IsConflict	value.

If	the	IsConflict	value	is	false,	you	can	use	that	port	number	safely.

Port

123

Monitor
The	DSM	manages	resource	by	slices	or	processes.	It	requires	the	information	"who	owns	this	process".	For	packages,	they	should
tell	DSM	which	daemon	belongs	to	them.

All	you	have	to	do	is	to	fill	the	 	Slice		field	in	your	systemd	unit	with	 	[package_name].slice	.	Here	is	an	example	field	from
units	for	MyPackage:

...

[Service]

Slice=MyPackage.slice

...

If	the	field	is	properly	set,	you	should	be	able	to	see	your	package	shown	on	the	resource	monitor.

Monitor

124

System	API

DSM	Backward	Compatibility

Weak	link	is	a	property	of	Apple’s	development	framework	which	ensures	backward	compatibility.	GCC	has	a	similar	property
called	“weak	symbol.”	We	utilize	this	capability	to	provide	a	weak	link	framework	in	libsynosdk	for	backward	compatibility	as
well.	You	can	find	available	headers	in	usr/syno/include/libsynosdk	under	chroot	environment.	Each	function	prototype	in
synosdk/*_p.h	is	labeled	with	a	macro	telling	you	when	this	function	is	added	into	libsynosdk.	Therefore,	you	can	input	a
function	in	DSM	4.2	as	follows:

/*	DO	NOT	include	*_p.h	directly	*/

#include	<synosdk/user.h>

#include	<synosdk/service.h>

/*	example,	SYNOServiceHomePathCheck	is	available	since	DSM	4.2	*/

if	(SYNOServiceHomePathCheck)	{

				SYNOServiceHomePathCheck(szPath,	TRUE,	TRUE,	&pResult);

}	else	{

				/*	implement	alternative	to	SYNOServiceHomePathCheck	here	*/

}

As	a	result,	when	your	application	runs	in	DSM	4.2	and	later,	function	SYNOServiceHomePathCheck	in	libsynosdk.so	is
invoked.	In	DSM	4.2	and	older,	else-part	will	be	executed	as	a	replacement	to	SYNOServiceHomePathCheck.

System	API

125

https://developer.apple.com/legacy/library/technotes/tn2064/_index.html#//apple_ref/doc/uid/DTS10003092-CH1-SECTION2

Package	Examples

Package	Examples

126

Compile	Open	Source	Project
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.	If	you	wish	to
compile	the	open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

You	have	to	create	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before	using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three
steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to
be	installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot
of	output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are
missing	on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the
required	conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the
configure	script	manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the	 	CC	,	 	LD	,
	RANLIB	,	 	CFLAGS	,	 	LDFLAGS	,	 	host	,	 	target	,	and	 	build	.

In	this	chapter,	we	will	use	platform	x64	as	our	example.

Preparation:

First	download	the	tmux	source	code	from	the	official	github	site	or	you	can	download	tmux	from	this	link.

Note:	The	archive	file	you've	downloaded	from	the	above	links	is	different	from	the	official	tmux	source	code.	We	have
added	the	necessary	build	scripts.

Project	Layout:

tmux/

				├──	tmux	related	source	code

				├──	INFO.sh

				├──	scripts/

				└──	SynoBuildConf/

								├──	build

								├──	depends

								└──	install

SynoBuildConf/depends:
The	following	is	the	depends	file	for	this	example.	There	is	nothing	special	about	the	depends	file.

[default]

all="7.0"

Open	Source	Tool:	tmux

127

https://github.com/tmux/tmux
https://github.com/SynologyOpenSource/tmux

SynoBuildConf/build:

The	build	script	is	slightly	different	from	the	previous	one.	Here	you	will	have	to	pass	the	following	environment	variables	to
configure:

CC
AR
CFLAGS
LDFLAGS

In	addition,	since	tmux	is	dependent	on	ncurses,	you	will	need	to	use	 	pkg-config		to	resolve	the	necessary	header	files	and
libraries	for	tmux.

The	following	is	an	example	of	SynoBuildConf/build:

#!/bin/sh

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

include	/env.mak

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

NCURSES_INCS="`pkg-config	ncurses	--cflags`"

NCURSES_LIBS="`pkg-config	ncurses	--libs`"

CFLAGS+="${CFLAGS}	${NCURSES_INCS}"

LDFLAGS+="${LDFLAGS}	${NCURSES_LIBS}"

env	CC="${CC}"	AR=${AR}	CFLAGS="${CFLAGS}"	LDFLAGS="${LDFLAGS}"	\

./configure	${ConfigOpt}

make	${MAKE_FLAGS}

SynoBuildConf/install
Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use	 	make	install		to	install	the	binaries	and
libraries.	You	can	pass	the	DESTDIR	environment	variable	to	specify	where	you	want	to	install	the	binaries	and	libraries.

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

PKG_NAME="tmux"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

SetupPackageFiles()	{

				DESTDIR="${INST_DIR}"	make	install

Open	Source	Tool:	tmux

128

				./INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

				cp	-r	scripts/	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts-ng/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				SetupPackageFiles

				MakePackage	

}

main	"$@"

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

.	/pkgscripts-ng/include/pkg_util.sh

package="tmux"

version="1.9-a"

displayname="tmux"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="This	package	will	install	tmux	in	your	DSM	system."

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	x64	-c	tmux

After	the	build	process,	you	can	check	the	result	in	 	/toolkit/result_spk	.

Verify	the	Result

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,
You	can	use	manual	install	in	Package	Center	to	install	your	package.

Warning:	Remember	to	import	your	keys	to	the	DSM	system	or	select	Any	publisher	in	Package	Center->Settings-
>General->Trust	Level.	Otherwise,	the	installation	will	fail.

You	can	then	try	to	connect	to	the	DSM	using	ssh	and	type	the	following	command	to	fully	scan	your	DSM	machine.

Open	Source	Tool:	tmux

129

cd	/var/packages/"${PKG_NAME}"/target/usr/local/bin

./tmux

Open	Source	Tool:	tmux

130

Compile	Open	Source	Project:	nmap
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.
The	open	source	project	that	we	are	going	to	build	in	this	example	is	nmap,	a	network	scanning	program.	We	will	use	x64	as	our
build	environment	platform.

If	you	wish	to	compile	an	open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

You	have	to	create	the	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before	using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three
steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to
be	installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot
of	output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are
missing	on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the
required	conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the
configure	script	manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the	 	CC	,	 	LD	,
	RANLIB	,	 	CFLAGS	,	 	LDFLAGS	,	 	host	,	 	target	,	and	 	build	.

Preparation:

First,	you	will	need	to	download	the	nmap	source	code	from	the	official	github	site.	You	will	also	need	to	download	the	libpcap
source	code	since	nmap	depends	on	libpcap.	The	libpcap	source	code	can	be	found	here.

The	following	commands	will	download	the	source	code	for	libpacp	and	nmap.

wget	https://nmap.org/dist/nmap-7.01.tar.bz2

tar	xvf	nmap-7.01.tar.bz2	-C	/toolkit/source	

mv	/toolkit/source/nmap-7.01	/toolkit/source/nmap

wget	http://www.tcpdump.org/release/libpcap-1.6.2.tar.gz

tar	xvf	libpcap-1.6.2.tar.gz	-C	/toolkit/source

mv	/toolkit/source/libpcap-1.6.2	/toolkit/source/libpcap

Or	use	git	to	download	source	code

cd	/toolkit/source

git	clone	https://github.com/nmap/nmap

git	clone	https://github.com/the-tcpdump-group/libpcap

cd	libpcap

git	checkout	origin/libpcap-1.6

Please	remember	to	upgrade	the	libpacp	to	version	1.6	or	the	build	package	process	will	fail.

Project	Layout:

Open	Source	Tool:	nmap

131

https://github.com/nmap/nmap
https://github.com/the-tcpdump-group/libpcap

Project	Layout:

After	you	download	the	source	code,	your	toolkit	layout	should	look	like	the	following	figure.

toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

│							└──	/usr/syno/

│											├──	bin

│											├──	include

│											└──	lib

├──	pkgscripts-ng/

└──	source/

				├──nmap/

				│			├──	nmap	related	source	code

				│			├──	INFO.sh

				│			├──	Makefile

				│			├──	Synoscripts/	#	nmap	has	it's	own	scripts	folder

				│			└──	SynoBuildConf/

				│							├──	build

				│							├──	depends

				│							└──	install

				└──libpcap/

								├──	libpcap	related	source	code

								├──	Makefile

								└──	SynoBuildConf/

												├──	build

												├──	depends

												├──	install-dev

												└──	install

The	file,	install-dev,	is	a	special	file	which	we	will	be	covered	in	the	following	section.

SynoBuildConf/depends:

The	SynoBuildConf/depends	for	nmap	is	slightly	different	from	the	previous	example.	Since	nmap	depends	on	libpcap,	we	have
to	add	the	value	to	the	BuildDependent	field,	so	that	the	PkgCreate.py	can	resolve	the	dependency	and	compile	the	project	in	the
correct	order.

The	depends	file	for	nmap	is	as	follows.

[BuildDependent]

libpcap

[default]

all="7.0"

However,	the	SynoBuildConf/depends	for	libpcap	is	the	same	as	the	Hello	World	Example.

[BuildDependent]

[default]

all="7.0"

SynoBuildConf/build:

The	SynoBuildConf/build	script	is	also	different	from	the	previous	one.

Open	Source	Tool:	nmap

132

Here	you	will	have	to	pass	several	environment	variables	to	configure,	so	that	nmap	can	be	compiled	properly

CC
CXX
LD
AR
STRIP
RANLIB
NM
CFLAGS
CXXFLAGS
LDFLAGS

Since	nmap	will	be	compiled	with	many	features	by	default,	we	will	need	to	disable	some	of	them	to	make	it	clean.	The	following
list	contains	the	features	that	will	be	disabled:

ndiff
zenmap
nping
ncat
nmap-update
liblua

Note:	If	you	are	interested	in	some	of	the	above	features	and	you	want	to	enable	them,	just	change	the	 	--without-
${feature}		into	 	--with-${feature}	.

The	following	is	the	SynoBuildConf/build	for	nmap

#!/bin/sh

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

include	/env.mak

PKG_NAME=nmap

INST_DIR=/tmp/_${PKG_NAME}

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}"	CXXFLAGS="$CXXFLAGS	$CFLAGS"	\

				LDFLAGS="${LDFLAGS}	-lnl	-lnl-genl	-ldbus-1"	\

				./configure	${ConfigOpt}	\

				--prefix=${INST_DIR}	\

				--without-ndiff	\

				--without-zenmap	\

				--without-nping	\

				--without-ncat	\

				--without-nmap-update	\

				--without-liblua	\

				--with-libpcap=/usr/local

make	${MAKE_FLAGS}

In	this	example, 	--with-libpcap		is	assigned	with	value	 	/usr/local	.	We	need	to	install	libpcap's	cross	compiled	product	into
"/usr/local"	so	that	nmap's	configure	can	retrieve	libpcap	correctly.

The	following	is	the	SynoBuildConf/build	for	libpcap.

Open	Source	Tool:	nmap

133

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

#	prefix	with	/usr/local,	all	files	will	be	installed	into	/usr/local

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}	-Os"	CXXFLAGS="${CXXFLAGS}"	LDFLAGS="${LDFLAGS}"	\

				./configure	${ConfigOpt}	\

				--with-pcap=linux	--prefix=/usr/local

make	${MAKE_FLAGS}

make	install

The	above	script	will	install	libpcap	related	files	into	 	/usr/local/		in	chroot	environment.	After	installing	libpcap,	nmap	can
find	libpcap's	cross	compiled	products	in	 	/usr/local	.

Synology	toolkit	provides	 	libpcap		in	chroot.

>	dpkg	-l	|	grep	libpcap

ii		libpcap-x64-dev																		7.0-7274					all								Synology	build-time	library

nmap	can	use	chroot's	libpcap	by	using	 	${SysRootPrefix}		variable.

--with-libpcap=${SysRootPrefix}

SynoBuildConf/install

Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use	 	make	install		to	install	the	binaries	and
libraries.	Since	we	have	used	the	 	--prefix		flag	when	configuring	the	nmap	project,	we	can	just	execute	make	install	and	it	will
install	the	nmap	related	files	to	the	folder	specified	by	 	--prefix	.

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

PKG_NAME="nmap"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

Open	Source	Tool:	nmap

134

SetupPackageFiles()	{

				make	install

				./INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

				cp	-r	scripts/	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts-ng/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				SetupPackageFiles

				MakePackage	

}

main	"$@"

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

.	/pkgscripts-ng/include/pkg_util.sh

package="nmap"

version="7.01"

displayname="nmap"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="This	package	will	install	nmap	in	your	DSM	system."

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Lastly,	run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	x64	-x0	-c	nmap

After	the	build	process,	you	can	check	the	result	in	 	/toolkit/result_spk	.

Verify	the	Result

If	the	packing	process	was	successful,	you	will	see	an	spk	file	placed	in	the	result_spk	folder.	To	test	the	spk	file,	you	can	use
manual	install	in	DSM	Package	Center	to	install	your	package.

Warning:	Remember	to	import	your	keys	to	the	DSM	system	or	select	Any	publisher	in	Package	Center->Settings-
>General->Trust	Level.	Otherwise,	the	installation	will	fail.

You	can	then	try	to	connect	to	the	DSM	using	ssh	and	type	the	following	command	to	fully	scan	your	DSM	machine.

Open	Source	Tool:	nmap

135

cd	/var/packages/nmap/target/usr/local/bin

./nmap	-v	-A	localhost

Open	Source	Tool:	nmap

136

Compile	Web	Package	-	WordPress
This	chapter	will	use	well	known	open	source	project	-	WordPress	as	an	example	to	show	you	how	to	build	a	php	based	web
package	integrating	with	DSM	Packages	--	WebStation,	MariaDB	and	Apache	server.

WordPress	is	the	largest	self-hosted	blogging	Open	Source	Project	that	have	been	used	by	millions	of	websites.	All	it	need	is	a
PHP	web	server	and	a	database,	then	you	can	build	your	own	blogging	website.	In	this	example,	we	will	use	WebStation	and
Apache	as	web	server	to	host	WordPress,	and	use	MariaDB	as	database.	Once	the	website	was	setted	up,	you	could	modify	web
server	configurations	for	WordPress	via	WebStation	UI.

As	mentioned	before,	you	have	to	create	SynoBuildConf/build,	SynoBuildConf/install,	SynoBuildConf/depends	and
WordPress	source	project	before	creating	spk.	However,	since	WordPress	depends	on	PHP,	we	don't	have	to	compile	any	source
code.

Preparation:
First	you	need	to	download	WordPress	from	official	website	and	unarchive	it	into	your	spk	source	project.	In	this	example,	we	put
it	under	src	as	shown	in	Project	Layout.

Secondly,	before	installing	your	WordPress	spk,	you	need	to	download	the	dependant	packages	such	as	WebStation,	MariaDB,
PHP7.2	and	Apache2.2	in	DSM	from	Package	Center.	Noted	that	we	use	PHP7.2	and	Apache2.2	in	this	example,	you	can	choose
whatever	you	want	in	considering	your	circumstances.

Third,	according	to	instructions	from	WordPress	official	website,	you	have	to	setup	DB	information	for	WordPress.	For	more
details,	please	see	WordPress	-	how	ot	install	wordpress.

Project	Layout:

wordpress_sample

├──	conf

│			├──	privilege

│			└──	resource

├──	INFO.sh

├──	Makefile

├──	scripts

│			├──	Makefile

│			├──	postinst

│			├──	postuninst

│			├──	postupgrade

│			├──	preinst

│			├──	preuninst

│			├──	preupgrade

│			├──	script_customized

│			└──	start-stop-status

├──	src

│			└──	wordpress

├──	SynoBuildConf

│			├──	build

│			├──	depends

│			└──	install

└──	ui

				├──	Wordpress_120.png

				├──	Wordpress_16.png

				├──	Wordpress_24.png

				├──	Wordpress_256.png

				├──	Wordpress_32.png

Web	Package:	WordPress

137

https://wordpress.org/support/article/how-to-install-wordpress/

				├──	Wordpress_48.png

				├──	Wordpress_64.png

				└──	Wordpress_72.png

INFO.sh:
As	metioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.	The	following	is	the	INFO.sh	file	for	this	example.	For	more
details	of	each	key's	purpose,	please	see	INFO.

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

package="wordpress_sample"

.	"/pkgscripts-ng/include/pkg_util.sh"

version="5.2.0-1009"

os_min_ver="7.0-40337"

startstop_restart_services="nginx.service"

instuninst_restart_services="nginx.service"

install_dep_packages="WebStation>=3.0.0-0226:MariaDB10:PHP7.2>=7.2.18-0108:Apache2.2>=2.2.34-0104"

install_provide_packages="WEBSTATION_SERVICE"

maintainer="WordPress"

thirdparty="yes"

silent_upgrade="yes"

arch="noarch"

reloadui="yes"

adminprotocol="http"

adminport="80"

adminurl="wordpress"

dsmuidir="ui"

package_icon="`/pkgscripts-ng/include/base64.php	${ICON_PATH}`"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

SynoBuildConf/depends:
The	following	is	the	depends	file	for	this	example.

[default]

all="7.0"

SynoBuildConf/build:

The	following	is	the	build	file	for	this	example.	Since	WordPress	is	depends	on	PHP,	there	is	nothing	to	do	in	build.

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	clean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

Web	Package:	WordPress

138

								;;

esac

make	${MAKE_FLAGS}

SynoBuildConf/install:
The	following	is	the	install	file	for	this	example.	In	this	example,	we	install	our	package	with	the	help	of	Makefile.

#!/bin/bash

#	Copyright	(c)	2000-2019	Synology	Inc.	All	rights	reserved.

#	set	include	projects	to	install	into	this	package

INST_DIR="/tmp/_WordPress"						#	temp	folder	for	dsm	files

PKG_DIR="/tmp/_WordPress_pkg"			#	temp	folder	for	package	files

PKG_DEST="/image/packages"

#	prepare	install	and	package	dir

for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

done

for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"	#	use	default	mask

done

make	INSTALLDIR=$INST_DIR	install

make	PACKAGEDIR=$PKG_DIR	package

.	"/pkgscripts-ng/include/pkg_util.sh"

pkg_make_package	$INST_DIR	$PKG_DIR

pkg_make_spk	$PKG_DIR	$PKG_DEST

Makefile:
The	following	is	the	Makefile	file	for	this	example.

WORDPRESSDIR=src

WORDPRESS_INSTALL_DIR=$(INSTALLDIR)/$(WORDPRESSDIR)

all	clean:

.PHONY:

install:

				[-d	$(INSTALLDIR)]	||	install	-d	$(INSTALLDIR)

				[-d	$(WORDPRESS_INSTALL_DIR)]	||	install	-d	$(WORDPRESS_INSTALL_DIR)

				cp	-a	$(WORDPRESSDIR)/*	$(WORDPRESS_INSTALL_DIR)

				[-d	$(INSTALLDIR)/ui]	||	install	-d	$(INSTALLDIR)/ui

				cp	-a	ui/*	$(INSTALLDIR)/ui

				#	change	owner	to	nobody	user/group	on	DS

				chown	-R	http:http	$(WORDPRESS_INSTALL_DIR)

INFO:	INFO.sh

				env	UISTRING_PATH=$(STRING_DIR)	./INFO.sh	>	INFO

package:	INFO

				[-d	$(PACKAGEDIR)]	||	install	-d	$(PACKAGEDIR)

				[-d	$(PACKAGEDIR)/scripts]	||	install	-d	$(PACKAGEDIR)/scripts

				cp	-a	scripts/*	$(PACKAGEDIR)/scripts

				chmod	755	$(PACKAGEDIR)/scripts/*

Web	Package:	WordPress

139

				cp	-a	conf	$(PACKAGEDIR)

				install	-c	-m	644	INFO	$(PACKAGEDIR)

clean:

Scripts:
The	following	are	spk	scripts	for	installing	WordPress	spk	into	DSM.

preinst:	There	is	nothing	to	do	for	 	preinst		in	this	example.	You	can	customize	your	own	 	preinst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postinst:	In	 	postinst		stage,	we	move	the	source	project	into	"/var/services/web_packages"	since	it's	Web	Station's	working
directory.

#!/bin/sh

WEBSITE_ROOT="/var/services/web_packages/wordpress"

chown	-R	WordPress:http	"$WEBSITE_ROOT/*"

exit	0

preuninst:	There	is	nothing	to	do	in	 	preuninst		in	this	example.	You	can	customize	your	own	 	preuninst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postuninst:	In	 	postuninst		stage,	we	remove	source	project	from	"/var/services/web_packages".

#!/bin/sh

exit	0

preupgrade:	There	is	nothing	to	do	in	 	preupgrade		in	this	example.	You	can	customize	your	own	 	preupgrade		script	for
upgrade	purpose.

#!/bin/sh

exit	0

postupgrade:	There	is	noting	to	do	in	 	postupgrade		in	this	example.	You	can	customize	your	own	 	postupgade		script	for
upgrade	purpose.

#!/bin/sh

exit	0

start-stop-status:	There	is	nothing	to	do	in	 	start-stop-status		in	this	example.	You	can	customize	your	own	 	start-stop-

Web	Package:	WordPress

140

status		script	by	following	the	template.

#!/bin/sh

case	"$1"	in

								start)

																exit	0

																;;

								stop)

																exit	0

																;;

								status)

																exit	0

																;;

								*)

																exit	1

																;;

esac

Privilege:

The	following	is	the	privilege	file	under	 	conf		directory.	The	privilege	file	is	configuration	for	specifying	the	installation	and
run	time	privilege.	The	detail	of	privilege	will	be	elaborated	under	privilge	section.

{

				"defaults":	{

								"run-as":	"package"

				},

				"username":	"WordPress",

				"join-groupname":	"http"

}

`

Worker:

The	following	is	the	resource	file	under	 	conf		directory.	The	resource	file	are	configurations	for	calling	workers.	In	this
example,	since	we	would	like	to	integrate	WordPress	with	WebStation,	we	will	call	WebStation's	worker	to	run	specific	setup
during	installation.	For	more	details,	please	see	webservice.

{

				"webservice":	{

								"services":	[{

												"service":	"wordpress",

												"display_name":	"WordPress",

												"support_alias":	true,

												"support_server":	true,

												"type":	"apache_php",

												"root":	"wordpress",

												"backend":	1,

												"icon":	"ui/Wordpress_{0}.png",

												"php":	{

																"profile_name":	"WordPress	Profile",

																"profile_desc":	"PHP	Profile	for	WordPress",

																"backend":	6,

																"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

																"extensions":	[

Web	Package:	WordPress

141

																				"mysql",

																				"mysqli",

																				"pdo_mysql",

																				"curl",

																				"gd",

																				"iconv"

],

																"php_settings":	{

																				"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																				"mysqli.default_socket":	"mysqli.default_socket",

																				"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock"

																},

																"user":	"WordPress",

																"group":	"http"

												},

												"connect_timeout":	60,

												"read_timeout":	3600,

												"send_timeout":	60

								}],

								"portals":	[{

												"service":	"wordpress",

												"type":	"alias",

												"name":	"wordpress",

												"alias":	"wordpress",

												"app":	"SYNO.SDS.WordPress"

								}],

								"pkg_dir_prepare":	[{

												"source":	"/var/packages/WordPress/target/src/wordpress",

												"target":	"wordpress",

												"mode":	"0755",

												"user":	"WordPress",

												"group":	"http"

								}]

				}

}

Build	and	Create	Package
Run	the	following	command	to	build	your	source	code	into	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	x64	-c	wordpress_sample

After	the	build	process,	you	can	check	the	result	in	 	/toolkit/result_spk	.

Verify	the	Result

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,
you	can	use	manual	install	in	Package	Center	to	install	your	package.

Web	Package:	WordPress

142

Publish	Synology	Packages

Publish	Synology	Packages

143

Get	Started	with	Publishing
To	publish	in	Synology	Package	Center	requires	a	few	simple	steps.	Here	is	how	to	do	it:

1.	 Apply	on	Synology	website	(https://www.synology.com/en-global/support/developer#apply).

2.	 Read	and	accept	the	Developer	Distribution	Agreement	and	Package	Developer	Guideline.	Note	that	packages	that	you
publish	on	Package	Center	must	comply	with	the	Terms	of	Service	in	Package	Center.

Please	note	that	the	package	quality	directly	influences	the	long-term	success	of	your	package	in	terms	of	installation,	online
reviews,	engagement,	and	user	retention.

Get	Started	with	Publishing

144

https://www.synology.com/en-global/support/developer#apply

Submitting	the	Package	for	Approval
Before	you	publish	your	package	in	Package	Center	and	distribute	it	to	users,	you	need	to	get	the	package	(the	SPK	file)	ready,
make	sure	you	have	test	it	internally,	and	prepare	your	promotion	materials	if	needed.	Please	see	the	below	before	submitting	your
package	to	us.

Confirm	Package	Behaviour

It	should	meet	our	package	review	items.	Please	refer	to	Package	review.

Confirm	Package	Size

The	overall	size	of	your	package	can	affect	its	design	and	how	you	publish	it	in	Package	Center.	Currently,	the	maximum	size	for
a	SPK	file	published	on	Package	Center	is	100MB.

Free	or	Paid	Package

In	Package	Center,	you	can	publish	free	or	paid	packages.	Free	packages	can	be	downloaded	by	any	user	in	Package	Center.	Paid
apps	can	be	downloaded	only	by	users	who	have	a	registered	Synology	Account.

Deciding	whether	your	package	will	be	free	or	paid	is	important	because	free	packages	must	remain	free.

Once	your	package	is	published	as	a	free	one,	you	cannot	change	it	to	a	paid	package.
If	you	publish	your	package	as	a	paid	one,	you	can	change	it	to	free	at	any	time	(but	cannot	be	changed	back	to	paid).

Prepare	Screenshots
When	you	publish	in	Package	Center,	you	must	supply	a	variety	of	high-quality	screen-shots	to	showcase	your	package	or	brand.
After	you	publish,	they	will	appear	on	your	package	details	page,	or	elsewhere.	These	screen-shots	are	a	key	part	of	a	successful
package	details	page	that	will	attract	and	engage	users.	Therefore,	you	may	also	consider	hiring	a	professional	to	produce	them	for
you.

Submit	Your	Package
When	you	are	ready	to	publish,	go	to	Synology	website	(https://www.synology.com/en-global/support/developer#apply)	to	apply
your	package.

Make	sure	that:

Your	package	is	the	right	version.
You	provide	a	download	link	for	your	package.
You	provide	a	package	description	with	what	it	does.
You	provide	a	change	log	with	what	was	updated	in	this	version.
The	link	to	your	website	and	the	support	email	address	is	correct.
You	have	acknowledged	that	your	package	meets	the	Developer	Distribution	Agreement	and	also	the	Terms	of	Service	from
Package	Center.

We	will	have	a	completed	and	rigorous	internal	process	to	make	sure	the	quality	of	the	published	package.	There	are	four	major
processes	in	short:

Submitting	the	Package	for	Approval

145

https://www.synology.com/en-global/support/developer#apply
http://www.synology.com/company/terms_of_services.php?lang=enu

We	will	have	a	completed	and	rigorous	internal	process	to	make	sure	the	quality	of	the	published	package.	There	are	four	major
processes	in	short:

1.	 Receive	your	package	and	release	note
2.	 Check	the	scripts	of	the	package
3.	 Verify	the	functions	of	the	package	on	different	major	versions	of	DSM	and	different	models.(Checklist)
4.	 Release	the	package	in	Package	Center.	In	the	verification	stage,	we	will	ask	you	to	provide	a	brief	operation	manual	and	test

scenario	for	testing.	If	there	are	any	issues,	we	will	feedback	to	your	teams	and	provide	the	related	information.	In	order	to
expedite	the	verification,	We	strongly	recommend	your	QC	should	verify	the	package	before	submitting	it.

Submitting	the	Package	for	Approval

146

Responding	to	User	Issues
After	you	publish	a	package,	it	it	crucial	for	you	to	offer	support	to	your	customers.	Prompt	and	courteous	support	can	provide	a
better	experience	for	users,	which	can	result	in	more	downloads	and	more	positive	online	reviews	for	your	packages.	Users	are
more	likely	to	be	more	engaged	with	your	package	and	recommend	it	if	you	are	responsive	to	their	needs	and	feedback.

There	are	many	ways	that	you	can	keep	in	touch	with	users	and	offer	them	support.	The	most	common	way	is	to	provide	a	support
email	address	in	your	package	details	page.	You	can	also	provide	support	in	other	ways,	such	as	a	forum	or	a	mailing	list.	The
Synology	technical	support	team	provides	user	support	for	downloading,	installing	and	payments	issues,	but	issues	that	fall
outside	of	these	topics	will	fall	under	your	domain.	Examples	of	issues	you	can	support	include:	feature	requests,	questions	about
using	the	app	and	questions	about	compatibility	settings.

After	publishing,	please	plan	to:

Provide	a	link	to	your	support	resources	and	set	up	any	other	support	outlets	such	as	a	forum.
Provide	an	appropriate	support	email	address	on	your	package	detail	page	and	respond	to	users	when	they	email	you.
Acknowledge	and	fix	issues	with	your	package.	It	helps	to	be	transparent	and	list	known	issues	on	your	package	details	page
regularly.
Publish	updates	frequently,	without	sacrificing	quality	or	annoying	users	with	too-frequent	updates.
With	each	update,	make	sure	you	provide	a	summary	of	what	is	new.	Users	will	read	it	and	appreciate	that	you	are	serious
about	improving	the	quality	of	your	package.

Responding	to	User	Issues

147

Appendix	A:	Platform	and	Arch	Value	Mapping	Table
The	architecture	of	the	NAS	is	developed	upon	various	platforms	on	which	your	package	is	designed	and	needs	to	be	addressed	in
the	INFO	file	in	the	package.

In	the	below	table,	you	will	find	the	string	value	corresponding	to	the	platform	in	question.	For	example,	if	the	platform	of	your
NAS	is	Marvell	ARMADA	370,	armada370,	the	value	that	should	to	be	provided	as	a	pair	of	the	arch	key	is	 	armada370	.

Please	check	the	platforms	of	the	NAS	to	be	supported	and	refer	to	the	table	below	for	their	corresponding	string	values:

Arch	Value Note

noarch Platform	independent

x86_64 For	all	x86_64	compatible	platforms

i686 For	i686	compatible	platform:	evansport

armv7 For	all	ARMv7	compatible	platforms:	alpine,	alpine4k

armv5 For	ARMv5	compatible	platforms:	628x

armv8 For	all	ARMv8	compatible	platforms:	rtd1296,	armada37xx

ppc For	all	Power	PC	compatible	platforms:	ppc

88f628x

alpine

alpine4k

apollolake

armada370

armada375

armada37xx

armada38x

armadaxp

avoton

braswell

broadwell

broadwellnk

broadwellntbap

bromolow

cedarview

comcerto2k

denverton

dockerx64

evansport

geminilake

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

148

geminilake

grantley

hi3535

kvmx64

monaco

purley

qoriq

rtd1296

v1000

x86

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

149

Compile	Applications
The	Synology	NAS	employs	embedded	SoC	or	x86-based	CPUs,	implementing	several	platforms	--	such	as	ARM	and	PowerPC	-
-	on	a	variety	of	Synology	NAS	models.	In	order	to	run	3rd-party	applications	on	the	Synology	NAS,	it	is	necessary	to	compile
applications	into	an	executable	format	for	the	corresponding	platform.

This	information	will	help	you	determine	which	DSM	tool	chain	(please	refer	to	the	“Download	DSM	Tool	Chain”	section)	to
download	for	each	model.

Please	refer	to	What	kind	of	CPU	does	my	NAS	have	for	a	complete	model	list.

To	compile	an	application	for	the	Synology	NAS,	a	compiler	that	runs	on	Linux	PC	is	required	in	order	to	generate	an	executable
file	for	the	Synology	NAS.	This	compiling	procedure	is	called	cross-compiling,	and	the	set	of	compiling	tools	(compiler,	linker,
etc)	used	to	compile	the	application	is	called	a	tool	chain.

Appendix	B:	Compile	Applications	Manually

150

http://forum.synology.com/wiki/index.php/What_kind_of_CPU_does_my_NAS_have

Download	DSM	Tool	Chain
To	download	the	DSM	tool	chain,	please	go	to	SourceForge.

You	would	need	to	know	what	your	target	platform	is	to	download	the	corresponding	tool	chain.	Here	is	the	platform	list

If	you	are	not	sure	about	which	tool	chain	you	need,	please	execute	the	following	command	on	your	Synology	NAS.

DiskStation>	uname	-a

Linux	DiskStation	4.4.59+	#24922	SMP	PREEMPT	Mon	Aug	19	12:13:37	CST	2019	x86_64	GNU/Linux	synology_apollolake_

718+

DiskStation>

The	output	"synology_apollolake_718+"	tells	you	which	tool	chain	is	appropriate.	For	example,	apollolake	means	you	need	the
tool	chain	for	"Intel	x86	Linux	4.4.59	(Apollolake)"	on	the	SourceForge.

After	you	download	the	DSM	tool	chain,	extract	it	to	where	you	want	it	on	your	computer.	For	the	following	instructions	we	will
extract	to	/usr/local/	as	an	example.	You	can	extract	the	tool	chain	by	using	the	following	command:

#	tar	xJf	apollolake-gcc493_glibc220_linaro_x86_64-GPL.txz	-C	/usr/local/

Please	make	sure	the	tool	chain	is	located	in	the	directory	/usr/local	on	your	computer	to	ensure	proper	integration.

Download	DSM	Tool	Chain

151

http://sourceforge.net/projects/dsgpl/files
http://forum.synology.com/wiki/index.php/What_kind_of_CPU_does_my_NAS_have
http://sourceforge.net/projects/dsgpl/files

Compile
You	can	start	compiling	an	application	called	“minimalPkg.c”,	for	example,	that	looks	like	this:

#include	<sys/sysinfo.h>

int	main()

{

				struct	sysinfo	info;

				int	ret;

				ret	=	sysinfo(&info);

				if	(ret	!=	0)	{

								printf("Failed	to	get	system	information.\n");

								return	-1;

				}

				printf("Total	RAM:	%u\n",	info.totalram);

				printf("Free	RAM:	%u\n",	info.freeram);

				return	0;

}

To	compile	the	application,	run	the	following	command:

/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linux-gnueabigcc	minimalPkg.c	–o	sysinfo

You	can	also	write	a	Makefile	for	it:

EXEC=	sysinfo

OBJS=	sysinfo.o

CC=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc

LD=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld

CFLAGS	+=	-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include

LDFLAGS	+=	-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$(OBJS)	-o	$@	$(LDFLAGS)

clean:

				rm	-rf	*.o	$(PROG)	*.core

Compile

152

Compile	Open	Source	Projects
To	compile	an	application	on	most	open	source	projects,	you	will	be	asked	to	execute	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	basically	consists	of	many	lines	which	are	used	to	check	details	about	the	machine	on	where	the	software	is
going	to	be	installed.	The	script	will	check	for	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will
see	a	lot	of	output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	reply.	If	there	are	any	major
requirements	missing	on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until
you	meet	all	the	requirements.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify
the	configure	script	manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the	 	CC	,	 	LD	,
	RANLIB	,	 	CFLAGS	,	 	LDFLAGS	,	 	host	,	 	target	,	and	 	build	,	etc.	Some	examples	are	given	below.

For	PowerPC	QorIQ	platform	in	DSM	5.0:

env	CC=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-gcc	\

				LD=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-ld	\

				RANLIB=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-ranlib	\

				CFLAGS="-I/usr/local/powerpc-none-linux-gnuspe/include	-mcpu=8548	-mhard-float	-mfloat-gprs=double"	\

				LDFLAGS="-L/usr/local/powerpc-none-linux-gnuspe/lib"	\

./configure	\

				--host=powerpc-unknown-linux	\

				--target=powerpc-unknown-linux	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Marvell	6281	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Marvell	Armada	370	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include	-mhard-float	-mfpu=vfp

v3-d16"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Marvell	Armada	375	platform	in	DSM	5.1:

Compile	Open	Source	Projects

153

For	Marvell	Armada	375	platform	in	DSM	5.1:

env	CC=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvelllinux-gnueabi-ccache-gcc	\

				LD=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvelllinux-gnueabi-ranlib	\

				CFLAGS="-I/usr/local/armv7-marvell-linux-gnueabi-hard/arm-marvelllinux-gnueabi/libc/usr/include	-mhard-floa

t	-mfpu=vfpv3"	\

				LDFLAGS="-L/usr/local/armv7-marvell-linux-gnueabi-hard/arm-marvelllinux-gnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Marvell	Armada	XP	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include	-mhard-float	-mfpu=vfp

v3-d16"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Annapurnalabs,	Alpine	platform	in	DSM	5.1:

env	CC=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linux-gnueabi-ccache-gcc	\

				LD=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linux-gnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-cortex_a15-linux-gnueabi/arm-cortex_a15-linux-gnueabi/sysroot/usr/include	-mfloat-

abi=hard	-mtune=cortex-a15	-mfpu=neon-vfpv4	-mthumb"	\

				LDFLAGS="-L/usr/local/arm-cortex_a15-linux-gnueabi/arm-cortex_a15-linux-gnueabi/sysroot/lib"	\

./configure	\

				--host=arm-cortex_a15-linux-gnueabi	\

				--target=arm-cortex_a15-linux-gnueabi	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Mindspeed,	Comcerto,	C2000	platform	in	DSM	5.0:

env	CC=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ccache-gcc	\

				LD=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-cortexa9-linux-gnueabi/arm-cortexa9-linuxgnueabi/sysroot/include	-mcpu=cortex-a9	-

march=armv7-a	-mfpu=neon	-mfloat-abi=hard	-mthumb"	\

				LDFLAGS="-L/usr/local/arm-cortexa9-linux-gnueabi/arm-cortexa9-linuxgnueabi/sysroot/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Intel	X86	platform	in	DSM	5.0:

env	CC=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-gcc	\

				LD=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ld	\

				RANLIB=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ranlib	\

				CFLAGS="-I/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/usr/include"	\

Compile	Open	Source	Projects

154

				LDFLAGS="-L/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/lib"	\

./configure	\

				--host=i686-pc-linux-gnu	\

				--target=i686-pc-linux-gnu	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Intel	Atom	Evansport	platform	in	DSM	5.0:

env	CC=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-gcc	\

				LD=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ld	\

				RANLIB=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ranlib	\

				CFLAGS="-I/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/usr/include"	\

				LDFLAGS="-L/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/lib"	\

./configure	\

				--host=i686-pc-linux-gnu	\

				--target=i686-pc-linux-gnu	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

Compile	Open	Source	Projects

155

Package	Review
We	are	excited	that	you	are	creating	packages	for	the	Synology	DSM	and	want	to	help	you	understand	our	guidelines	so	you	can
be	confident	your	package	will	get	through	the	review	process	quickly.

Review	Item Review	Guideline

INFO:	required	field Ensure	required	fields	in	INFO	exists

INFO:	deprecated	field Ensure	deprecated	fields	in	INFO	does	not	exist	(from	DSM7.0)

Lower	priviledge The	package	should	be	run	with	non-privileged	user	(from	DSM7.0)

Package	installation The	package	should	be	installed	successfully

Package	start The	package	should	be	started	successfully

Package	stop The	package	should	be	stopped	successfully

Package	upgrade The	package	should	be	upgraded	successfully

Package	uninstall The	package	should	be	uninstalled	successfully

Offline	installation The	package	should	be	able	to	be	installed	offline

Network	activity	during	installation There	should	not	be	any	abnormal	connection	during	installation

Security	advisor	scan The	package	should	not	cause	any	security	advisor	issue

Antivirus	essential	scan The	package	should	pass	the	virus	scanning

Clean	up/file	leftover Files	belong	to	package	should	be	removed	after	uninstallation

Clean	up/process	leftover Process	belong	to	package	should	be	stopped	after	uninstallation

Port-config Register	port	numbers	used	by	services	of	package

Port	conflict Registered	port	should	not	conflict	with	other	services

Error	log There	should	not	be	any	error	log	left	on	system

Apparmor	log There	should	not	be	any	deny	log	from	apparmor

Coredump	file There	should	not	be	any	coredump	file	left	on	system

Ad-hoc	test Check	any	other	abnormal	behavior

Appendix	C:	Publication	Review	&	Verification

156

https://www.synology.com/en-us/knowledgebase/DSM/help/DSM/SecurityScan/securityscan_desc

	Package Developer Guide
	Release Notes
	Breaking Changes
	Getting Started
	System Requirements
	Prepare Envrionment
	Your First Package

	Synology Toolkit
	Build Stage
	Pack Stage
	Sign Package (only for DSM6.X)
	References

	Synology Package
	INFO
	Necessary Fields
	Optional Fields

	package.tgz
	scripts
	Script Environment Variables
	Script Messages

	conf
	privilege
	resource
	PKG_DEPS
	PKG_CONX

	WIZARD_UIFILES
	LICENSE

	Synology DSM Integration
	FHS
	Desktop Application
	Application Config
	Application Help
	Application I18N
	Application Authentication
	Privilege Config
	Resource Config
	Resource Timing
	Resource Update
	Resource List

	Port
	Monitor
	System API

	Package Examples
	Open Source Tool: tmux
	Open Source Tool: nmap
	Web Package: WordPress

	Publish Synology Packages
	Get Started with Publishing
	Submitting the Package for Approval
	Responding to User Issues

	Appendix A: Platform and Arch Value Mapping Table
	Appendix B: Compile Applications Manually
	Download DSM Tool Chain
	Compile
	Compile Open Source Projects

	Appendix C: Publication Review & Verification

